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Accurate assessment of estimated fetal weight (EFW) is crucial
in obstetrics, yet the exact contribution of biometric parameters
in sonographic formulas remains unclear. Twenty‑six datasets
from published studies spanning diverse populations and ges‑
tational ageswere analysed, incorporatingmeasurements of bi‑
parietal diameter (BPD), abdominal circumference (AC), head
circumference (HC) and femur length (FL). Sobol’ global sen‑
sitivity analysis—a variance‑based approach—quantified each
parameter’s influence on EFW across 29 established formu‑
las, and bootstrapping estimated the median of the sensitiv‑
ity indices with 95% confidence intervals. Results showed that
AC was generally the dominant predictor, especially in later
pregnancy, while BPD, HC and FL exhibited variable impor‑
tance depending on formula and gestational age. Two‑thirds
of the formulas demonstrated parameter crossover effects, and
nearly half had at least one parameter with minimal contribu‑
tion. These findings indicate that parameter significance differs
by both formula and gestational age, suggesting that clinicians
should select EFW formulas based on gestational age, mea‑
surement reliability and fetal characteristics. Estimates made
with fewer than the intended parameters can be viable in emer‑
gencies. The proposed methodology can guide the refinement
of existing formulas and the development of improved fetal
weight estimation models.

1. Introduction
Estimating the weight of a fetus is a critical aspect of prena‑
tal care, primarily conducted through ultrasound imaging [1–4].
This method allows healthcare providers to measure various fe‑
tal parameters, such as the biparietal diameter (BPD), abdominal
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Figure 1. The biometric characteristics of a fetus, such as the circumference of its head and abdomen, the length of its femur, or its bi-
parietal diameter are measured using ultrasound. The measurements are then entered into various mathematical formulas to estimate
the weight of the fetus.

circumference (AC), head circumference (HC) and femur length (FL). Thesemeasurements are then used
as parameters in establishedmathematical formulas to calculate the estimated fetal weight (EFW) [5] (see
figure 1).

The parameters of a mathematical function do not necessarily contribute equally to its output. In
many mathematical models, particularly nonlinear ones, certain parameters can have a more significant
impact on the result than others. Mathematical methods, such as sensitivity analysis, can reveal the vary‑
ing degrees of influence each parameter has, illustrating that the overall result is often a product of both
individual and interactive effects among the parameters involved [6,7]. This complexity underscores
the importance of analysing parameter contributions rather than assuming uniform influence across all
inputs.

As pregnancy progresses, the accuracy of fetal head measurement becomes increasingly challeng‑
ing. This is due to various factors, including the position of the fetus, the volume of amniotic fluid
and the presence of an anterior placenta. Furthermore, the fetal head may engage with the pelvis, po‑
tentially impeding the acquisition of clear ultrasound images [8–10]. Therefore, in the latter stages of
pregnancy, formulas that are influenced less by head parameters (BPD and HC) could lead to more
accurate predictions.

Shaheen et al. [11] conducted a comparative analysis of two distinct fetal weight estimation formulas,
one incorporating HC and one that does not. The study concluded that the discrepancy in accuracy be‑
tween these formulas was negligible. Consequently, the researchers deduced that, in the context of this
particular comparison, HC does not constitute a substantial parameter.

Is it possible to extend the conclusions drawn by Shaheen et al. [11], i.e. to systematically analyse the
contributions of parameters across different formulas? Establishing a way to quantify the contribution
of each parameter in fetal weight estimation formulas would enable comparisons and resolve the afore‑
mentioned inquiry. Sensitivity analysis emerges as a mathematical approach that can effectively tackle
this challenge [6,7]. Techniques such as the Sobol’ method [12] are used in sensitivity analysis to measure
the extent to which a parameter influences the output of a given problem, quantified by a metric known
as the Sobol’ index.

There exist many studies comparing the accuracy of different formulas for the calculation of EFW
[3,5,13–20]. They often involve retrospective and prospective analysis, comparing predicted weights to
actual birth weights to assess accuracy, bias and reproducibility. Such articles underscore the ongoing
quest for more reliable fetal weight estimation techniques that can enhance obstetric care by improving
predictions related to deliverymanagement and neonatal outcomes. However, no research has been con‑
ducted that systematically assesses the contribution of the involved parameters of each formula to the
EFW.

The scope of the present study is to evaluate the effect of the biometric parameters of various formulas
on the EFW. The utilized approach relies on an unbiased global sensitivity analysis scheme, known as
the Sobol’ method.

2. Methods
Anoverviewof the implementedmethods can be found in figure 2 and a detailed description is presented
below.
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Figure 2. The current study deploys amulti-step process involving the utilization of numerous datasets sourced from existing literature.
The Sobol’ method is then applied to each of these datasets, for all the studied formulas. Following this, bootstrapping is conducted us-
ing the computed Sobol’ indices from each individual week as the sample points (the figure uses colour to visualize the different sample
points). Finally, the median, along with a 95% confidence interval, are estimated from the mean Sobol’ index of the resamples.

2.1. Formulas
The formulas under investigation, which take into account more than one independent parameter, are
presented in table 1. These formulas take a combination of BPD, AC, HC and FL as their parameter
arguments.

2.2. Sensitivity analysis
The Sobol’ method [12], a global sensitivity analysis technique, is a variance‑based approach used to
evaluate how changes in parameter inputs influence the outputs of a mathematical model. The method
operates by partitioning the variance of the outputs generated by the model into distinct contributions
from individual input parameters and their respective interactions [6,7]. Assuming that f is the mathe‑
matical formula used for fetal weight estimation and X is the vector of the parameters of f, then by the
Hoeffding decomposition, the total variance of the formula can be written as

Var[f(X)] =
d∑

i=1
Vi +

d∑

i<j
Vi,j +⋯ + V1,2…,d,

where Vi represents the variance due to the main effect of parameter Xi, Vi,j represents the variance due
to the interaction between parameters Xi and Xj and so on.

Sobol’ sensitivity indices are normalized metrics that correspond to the aforementioned representa‑
tions. The first‑order sensitivity indices are defined as

Si =
Vi

Var
[
f(X)

] .

A high first‑order index indicates that the parameter has a significant direct influence on the output.
The second‑order sensitivity indices are defined as

Si,j =
Vi,j

Var
[
f(X)

] .

A high second‑order index indicates that the combined effects of the two parameters are not merely
additive. Both the first‑ and second‑order indices range from 0 to 1.

Higher order indices are calculated similarly.
The total‑order indices are defined as

STi
= Si +

∑

j≠i
Si,j +

∑

j<k≠i
Si,j,k + … .

It captures the total contribution of parameterXi, including its main effect and all interactions with other
variables. Unlike the nth order indices, they do not range from 0 to 1.

The Julia package GlobalSensitivity.jl [39] is utilized for the calculation of the Sobol’ indices. The
variances are calculated numerically using the Jansen estimator [40].
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Table 1. List of the formulas under investigation.

source formula

Combs [21] 0.23718 (AC)2 (FL) + 0.03312 (HC)3

Ferrero [22] 100.77125+0.13244(AC)−0.12996(FL)−1.73588(AC)2∕1000+3.09212(AC)(FL)∕1000+2.18984(FL)∕(AC)

Hadlock I [23] 101.304+0.05281(AC)+0.1938(FL)−0.004(AC)(FL)

Hadlock II [23] 101.335−0.0034(AC)(FL)+0.0316(BPD)+0.0457(AC)+0.1623(FL)

Hadlock III [23] 101.326−0.00326(AC)(FL)+0.0107(HC)+0.0438(AC)+0.158(FL)

Hadlock IV [23] 101.3596+0.00061(BPD)(AC)+0.424(AC)+0.174(FL)+0.0064(HC)−0.00386(AC)(FL)

Halaska [24] 100.64041(BPD)−0.03257(BPD)2+0.00154(AC)(FL)

Hsieh [25] 102.1315+0.0056541(BPD)(AC)−0.00015515(BPD)(AC)2+0.000019782(AC)3+0.052594(BPD)

INTERGROWTH-21 [26] e5.084820−54.06633((AC)∕100)3−95.80076((AC)∕100)3 ln((AC)∕100)+3.136370(HC)∕100

Jordaan I [27] 10−1.1683+0.0377(AC)+0.095(BPD)−0.0015(BPD)(AC)

Jordaan II [27] 100.9119+0.0488(HC)+0.0824(AC)+0.001599(AC)(HC)

Merz [28] 3200.40479 + 157.07186 (AC) + 15.90391 (BPD)2

Ott [29] 10−2.0661+0.04355(HC)+0.05394(AC)−0.0008582(AC)(HC)+1.2594(AC)(FL)(AC)

Roberts [30] 101.6758+0.01707(AC)+0.042478(BPD)+0.05216(FL)+0.01604(HC)

Schild [31] 5381.193 + 150.324 (HC) + 2.069 (FL)3 + 0.0232 (AC)3 −
6235.478 log(HC)

Shepard I [32] 10−1.599+0.144(BPD)+0.032(AC)−0.000111(AC)(BPD)2

Shepard II [32] 10−1.7492+0.166(BPD)+0.046(AC)−0.002646(BPD)(AC)

Thurnau [33] 9.337 (BPD) (AC) − 229

Vintzileos I [34] 101.879+0.084(BPD)+0.026(AC)

Vintzileos II [34] 102.082+0.004(HC)(FL)+0.0018(AC)−0.00000001509((HC)(FL))3

Warsof [35] 10−1.599+0.144(BPD)+0.032(AC)−0.000111(BPD)2(AC)

Weiner I [36] 101.6961+0.02253(HC)+0.01645(AC)+0.06439(FL)

Weiner II [36] 101.6575+0.04035(HC)+0.01285(AC)

Woo [37] 1.4 (BPD) (AC) (HC) − 200

Woo I [38] 101.54+0.15(BPD)+0.00111(AC)2−0.0000764(BPD)(AC)2+0.05(FL)−0.000992(AC)(FL)

Woo II [38] 101.14+0.16(BPD)+0.05(AC)−2.8(BPD)(AC)∕1000+0.04(FL)−4.9(AC)(FL)∕10000

Woo III [38] 101.13+0.18(BPD)+0.05(AC)−3.35(BPD)(AC)∕1000

Woo IV [38] 101.63+0.16(BPD)+0.00111(AC)2−0.0000859(BPD)(AC)2

Woo V [38] 100.59+0.08(AC)+0.28(FL)−0.00716(AC)(FL)

2.3. Data
A rundown of the utilized datasets can be seen in table 2. Descriptive statistics for BPD, HC, AC and FL
are presented in figure 3. An in‑depth look at the datasets is provided in the electronic supplementary
material. In all the studies presented in table 2, a number of measurements, regarding the parameters of
interest,were taken frompregnantwomenof various ethnicities at various gestational ages. Furthermore,
the researchers calculated the 10th and 90th percentile charts for all parameters and for all gestational
ages investigated in each study. The present study examines the 10th and 90th percentiles of each pa‑
rameter on a weekly basis, designating these values as the lower and upper bounds for each parameter
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Table 2. Rundown of the utilized datasets. Further details are included in the electronic supplementary material.

source year country number of fetuses weeks

Araujo Júnior et al. [41] 2014 Brazil 31 476 18–38

Brons et al. [42] 1990 The Netherlands 63 12–40

Browne et al. [43] 1992 USA 8285 10–44

Buck Louis et al. [44]
(Asian)

2015 USA 460 10–40

Buck Louis et al. [44]
(Black)

2015 USA 611 10–40

Buck Louis et al. [44]
(Hispanic)

2015 USA 649 10–40

Buck Louis et al. [44]
(White)

2015 USA 614 10–40

Chitty et al. [45–47] 1994 UK 594–649 12–42

de la Vega et al. [48] 2008 Puerto Rico 548 14–38

Dubiel et al. [49] 2008 Poland 959 20–42

Dulger et al. [50] 2024 Turkey 1132 15–40

Fouad et al. [51] 2021 Egypt 540 14–40

Giorlandino et al. [52] 2009 Italy 4896 14–41

Johnsen et al. [53] 2006 Norway 650 10–42

Jung et al. [54] 2007 South Korea 10 455 12–40

Kiserud et al. [55] 2017 multinational 1387 14–40

Kwon et al. [56] 2014 South Korea 986 15–40

Lai & Yeo [57] 1992 Singapore 6374 14–41

Lessoway et al. [58] 1998 Canada 1396 11–42

Lindström et al. [59] 2020 Sweden 583 12–42

Munim et al. [60] 2012 Pakistan 1228 20–39

Paladini et al. [61] 2005 Italy 626 16–40

Papageorghiou et al.
[62]

2014 multinational 13 108 14–40

Saksiriwuttho et al. [63] 2007 Thailand 628 14–41

Stampalija et al. [64] 2020 Italy 7347 15–40

Verburg et al. [65] 2008 The Netherlands 8313 12–40

during each week. These bounds are critical for the parameter sampling that is required for the Sobol’
method.

2.4. Sampling
The computation of variances using the Jansen estimator necessitates the use of two design matrices.
In order to construct a design matrix, it is essential to have a method for generating samples of the
parameters.

In order to eliminate the bias from the dataset and at the same time investigate the whole parameter
space uniformly (i.e. more evenly), it is assumed that, for each week, the parameters follow a continuous
uniformdistribution, between the bounds defined by the 10th and 90th percentiles charts of thatweek. To
this end, a quasi‑random low‑discrepancy sequence of numbers is generated in the interval between the
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Figure 3. Descriptive statistics pertaining to the bounds of the biometric parameters of interest. The solid lines represent the median
corresponding to the 50th percentile, whereas the bands illustrate the medians of the 10th and 90th percentiles, respectively, based on
the aggregated data obtained from the sources outlined in table 2.

10th and the 90th percentile of each parameter, utilizing the Sobol’ sampling method, which is described
in Sobol’ [12]. The Julia package QuasiMonteCarlo.jl is used to generate design matrices consisting of
Sobol’ sequences, with a sample size of 106, for each formula and each week.

2.5. Estimation of the mean of indices with bootstrapping
Themean values of the indices of each formula are estimated using non‑parametric bootstrapping, which
is described in Casella & Berger [66]. This method is chosen due to its no distributional assumptions,
robustness to outliers and usefulness in small samples.

To obtain the median, along with a 95% CI for the estimation of the mean of the Sobol’ indices, the
methodology outlined below is followed.

(i) The Sobol’ indices are calculated for every combination of formula and dataset for each week in
which data are available.

(ii) The calculated Sobol’ indices are grouped together by formula and gestation age (excluding weeks
43 and 44 due to scarcity of available data).

(iii) 106 bootstrap samples are created for each aforementioned group.
(iv) The average is calculated for each bootstrap sample, resulting in samples of size 106 for the

respective mean value of each group.
(v) The median, along with a 95% CI, is estimated for each mean‑value sample, using the empirical

distribution function.

3. Results
Figure 3 presents an estimate of the first‑order Sobol’ indices for a curated list of formulas of table 1,
based on the datasets of table 2. Each panel consists of an error bar for each parameter and for each ges‑
tational week. The median of the mean value of the indices is represented by a dot, while the whiskers
represent a 95% CI. In addition, each panel displays the indices for each individual dataset as a scatter
plot with a low alpha value. The complete list of obtained results, for all formulas of table 1, is presented
in electronic supplementary material, figures S1‑S29.

https://github.com/SciML/QuasiMonteCarlo.jl
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The higher order Sobol’ indices for all the tested formulas were found to be small (< 0.01). Hence,

they are not presented. Given the insignificance of the higher order indices, the total‑order indices are
approximately equal to the first‑order indices. Therefore, they are also omitted.

In terms of a general overview of the results, approximately half of the formulas (45%) have at least
one parameter with a first‑order Sobol’ index that is less than 0.3.

Moreover, 66% of the formulas exhibit a crossover in parameter importance—some transition from
low‑to‑high significance, while others decline from high to low—over the course of gestation. This
indicates that in most formulas, the parameters undergo a reversal in their significance level.

With regard to the monotonicity of the indices, it is observed that, following the 20th week, the vast
majority of the studied formulas exhibit strictly monotonic indices. During weeks 10–20, approximately
41% of the formulas exhibit at least one index with a turning point. Notably, all of these formulas contain
FL as a parameter. Furthermore, only two of the 16 formulas with FL as a parameter do not display a
turning point (12.5%).

With respect to the importance of each parameter, the presence of HC is insignificant (having an index
less than 0.3 throughout the whole gestation) in 20% of the formulas that it appears in, BPD in 33%, AC
in 4% and FL in 38%. On the contrary, only two of the formulas (7%) have a consistently dominant index,
with values greater than 0.7 throughout the gestation. Specifically, HC is dominant in Weiner II (1985)
and AC is dominant in Merz (1988).

As far as the uncertainty of the estimates is concerned, the length of the 95% CI is generally narrow,
indicating a precise estimate. However, some formulas have a more broad 95% CI during weeks 10–15,
such as INTERGROWTH‑21 (2017) and Shepard I (1982), as well as during weeks 41 and 42, such as
INTERGROWTH‑21 (2017) and Halaska (2006).

4. Discussion
4.1. Summary of key findings
This study demonstrated that nearly half of the formulas under investigation include at least one param‑
eter which admits a very low Sobol’ index. This indicates that a considerable number of the formulas are
not parsimonious, as they utilize more parameters than are necessary to make a prediction for the EFW.
Similar findings have been observed in previous studies, such as the insignificance of HC in Hadlock III
(1985) [11].

AC is considered to be a crucial parameter in fetal weight estimation [67–71]. After all, it is included
in all the studied formulas. The results of the present study highlight the importance of AC; however,
just like all the tested parameters, its contribution depends on both the choice of the formula and the
gestation age.

Furthermore, two‑thirds of the formulas exhibit a crossover effect, with at least two of the parameters
overtaking each other over time. This noteworthy phenomenon can be attributed to various factors. To
begin with, as can be seen from figure 3, during week 10 the aggregate measurements of all the biometric
parameters show a standard deviation of around 2 cm. This standard deviation continues to increase
throughout gestation, reaching about 15.5 cm by the 42nd week. The substantial increase in the variation
of inter‑parameter values may elucidate the crossover effect observed in the indices, given the consid‑
erable differences in parameter sizes. Another potential explanation lies in the way the formulas are
generated. The regression analysis used for the creation of the formulas does not take into account the
temporal dependencies of the parameters. A thorough search of the relevant literature yielded no for‑
mulas that are produced utilizing time series regression, and it would be worthwhile to examine if such
a model could admit time‑stable indices.

Regarding the second‑order Sobol’ indices, theymeasure the degree of interaction between the associ‑
ated parameters. The term ‘interaction’ is used to describe a situation in which the effect of one variable
on an outcome depends on the level of another variable. Consequently, if the second‑order index be‑
tween two parameters of a formula were to be identified as significant, it could, for instance, signify that
one of the parameters must be above or below a specific threshold in order for the other to be taken
into account. This scenario would be incongruent with the objective of fetal weight estimation, as the
larger the value of a biometric parameter is, the larger the EFW should be, irrespective of the value of
the remaining parameters. Hence, since none of the formulas under investigation admitted a significant
higher‑order Sobol’ index, they are all well defined.
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An explanation for this phenomenon may be the bounds of the parameters. As depicted in figure 3,

the parameters have different magnitudes, which can lead to the dominance of some of them in interac‑
tion terms. An example of this is Woo (1986), in which EFW depends exclusively on the interactions of
BPD, AC and FL, yet admits small higher order Sobol’ indices.

This study indicated that the uncertainty associated with the estimates is characterized by generally
narrow 95% CIs, although exceptions were observed during the early and late stages of gestation.

One potential explanation for the broader estimates is the smaller number of data points available for
analysis in those weeks. As can be seen in table 2, most of the datasets utilized do not provide data for
the aforementioned stages of gestation. This results in the bootstrap estimate being less reliable, thereby
increasing the uncertainty, due to the smaller sample size. Another potential reason for this could be
the variability of the data in those weeks. During the early gestation, particularly between weeks 10 and
15, the fetus is still small, which can make accurate measurements of the parameters difficult [72], thus
influencing the 10th and 90th percentile charts on which this study’s approach relies.

4.2. Interpretations of results
To facilitate the interpretation of the results, some examples are in order. The following examples use
data from Papageorghiou et al. [62], and concern week 38, during which it is important to estimate fetal
weight.

Assuming a fetus with the median biometric parameters, Hadlock III (1985) calculates the EFW to be
2990.54 g.When HC lies at the 90th percentile, with the remaining parameters lying at the median, then
the EFW is 3102.99 g (3.75% increase). Doing the same for AC results in the EFW to be 3376.14 g (12.88%
increase), whereas for FL is 3123.26 g (4.43% increase). The respective first‑order Sobol’ indices for HC,
AC and FL are 0.076, 0.82 and 0.105. It is obvious that the most substantial change occurs when AC is
altered, followed by FL, and then HC.

Assuming a fetus with the median biometric parameters, Hadlock IV (1985) computes the EFW to
be 3049.05g. When BPD lies at the 90th percentile, with the remaining parameters lying at the median,
then the EFW is 3116.23 g (2.22% increase). Doing the same for HC results in the EFW to be 3116.92 g
(2.22% increase), whereas for AC the result is 3444.67 g (12.98% increase) and for FL is 3173.29 g (4.07%
increase). The respective first‑order Sobol’ indices for BPD, HC, AC and FL are 0.027, 0.028, 0.854 and
0.09. It is evident that the most significant change occurs when AC is altered, followed by FL, and then
BPD and HC, which both affect EFW similarly.

The results of the above practical examples demonstrate complete alignment with the findings of the
present study.

4.3. Implications
The findings of the present study facilitate the development of personalized and adaptive techniques
for the estimation of fetal weight. Different clinical situations can affect the accuracy of certain biometric
measurements. For example, there are cases where the fetus’s head can be challenging to be measured,
especially during the later stages of pregnancy [8–10]. Therefore, to minimize the error in predictions, it
is recommended to use a formula with small first‑order indices for the head parameters (BPD and HC),
during the later stages of gestation. Additionally, the presence of insignificant parameters affects clinical
situations, particularly in the ability to perform a rough but precise estimate in emergency contexts. For
instance, a sonographer aiming to conduct an urgent assessment of the EFW utilizing INTERGROWTH‑
21 (2017) at around the 33rd week of gestation could derive predictions comparable to those obtained
from measuring both abdominal AC and HC by relying solely on the AC measurement, while offering
a rough estimate for HC or even using the median value from a pertinent percentile chart.

Furthermore, personalized medicine can be easier to be implemented, particularly for fetuses with
anatomical anomalies or asymmetrical growth. For instance, in cases of skeletal dysplasia [73], clinicians
should avoid formulas with a high first‑order index for FL. Similarly, in hydrocephalus [74], reliance
on formulas with a high first‑order index for HC can lead to overestimations of the EFW. This level of
adaptability guarantees that the EFWaccurately represents the fetus’s actual condition, rather than being
skewed by formulaic inaccuracies.

Another key implication of this study is the ability to refine training and quality control measures
for sonographers. Assuming that a clinic uses some particular formulas for estimating fetal weight, and
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Figure 4. Comparison of the first-order Sobol’ index (measure of parameter significance) of different fetal weight estimation models
over gestational week 10 through 42. The figure presents an estimate of the median (solid markers) and a 95% CI (error bars) of the
mean Sobol’ index computed for each formula and gestational age, for various datasets. Each panel corresponds to a different formula,
with the equation used for estimation displayed at the top of each plot. The colour legend indicates the biometric parameters used in
the models: biparietal diameter (BPD, pink), abdominal circumference (AC, green), femur length (FL, yellow) and head circumference
(HC, purple). The indices for each individual dataset are illustrated in each panel as scatter plots, utilizing a low alpha value. The data
suggest varying trends across models, with some showing diverging patterns of relative contribution from different parameters.

those formulas are highly dependent on a specific parameter, then training programmes should aim to
improve sonographers’ skills in acquiring accurate and consistent measurements of that parameter.
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4.4. Strengths and limitations
A notable strength of this study is its minimal reliance on a single, specific dataset of measurements,
which could potentially be biased towards particular values, due to the ethnicity of the mother, operator
variability and technical factors of ultrasound equipment, among others. On the contrary, it relies solely
on the estimates of the 10th and 90th percentile charts, allowing it to investigate the entire parameter
space evenly, ensuring that the results are objective and impartial. Furthermore, the results are based
on a bootstrap estimate of numerous datasets, with participants of various ethnicities, which provides
additional assurance regarding the reliability of the findings.

A limitation of this study is the exclusion of outliermeasurements from the explored parameter range.
The omission of measurements scoring below the 10th and above the 90th percentile ensures the validity
of the results for appropriate for gestational age fetuses. However, it should be noted that the respective
indices for small and large gestational age fetuses may vary from those presented in the current article.
Hence, the dependence of fetal weight on individual biometric parameters for such cases could be ex‑
plored in a future study. An additional limitation of this study is the Sobol’ method’s inability to account
for parameter correlations. Despite the findings being in agreement with prior studies and being practi‑
cally sound as outlined through §4, it would be valuable to explore the conclusions reached by utilizing
alternative sensitivity analysis methods, such as Shapley effects [75], derivative‑based global sensitivity
measure [76], Borgonovo’s indices [77], etc., in a future study.

5. Conclusions
This study applied global sensitivity analysis using the Sobol’ method to evaluate how different biomet‑
ric parameters influence the estimation of the fetal weight produced by utilizing a range of ultrasound
formulas throughout pregnancy. Our findings demonstrate that not only does the importance of specific
measurements change with gestational age, but it also varies significantly from one formula to another.

Across many formulas, AC generally stands out as a dominant parameter, especially during later
gestation. However, the degree of reliance on AC—just like the rest of the parameters—differs among
formulas. For instance, some formulasmay be highly sensitive to changes inAC,while othersmight show
agreater dependence on FL or evendisplay a balanced contribution from several parameters during early
gestation.

These variations imply that clinicians and sonographers should interpret fetal weight estimates in a
stage‑specific and formula‑specific context. In practice, thismeans thatwhen a particular formula is used,
the corresponding sensitivity to its biometric inputs should guide both the measurement focus and the
interpretation of the estimated fetal weight. Tailoring the approach in this way can improve the accuracy
of assessments and enhance decision‑making in prenatal care.

Future research could further investigate these differences andwork towards refining existing formu‑
las or developing new ones that utilize the methodology of this study to generate models, customized to
address the unique characteristics of specific scenarios.
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