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Abstract
A model for the mathematical study of immune response to breast cancer is proposed
and studied, both analytically and numerically. It is a simplification of a complex one,
recently introduced by two of the present authors. It serves for a compact study of
the dynamical role in cancer promotion of a relatively recently described subgroup of
regulatory B cells, which are evoked by the tumour.

Keywords Cancer immunology · Tumour-evoked regulatory B cell · Mathematical
modelling · Stability analysis · Bifurcation analysis · Numerical simulation
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1 Introduction

The immune system, divided into the major components of innate and adaptive immu-
nity, grants an organism the ability to detect invading pathogens and transformed cells
(e.g. cancer cells)—namely differentiate between “self” and “non-self”—and to elim-
inate them. The provided type and measure of inflammation fit the circumstances, i.e.
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the immune system dynamically adjusts the induced inflammatory response (Segel
and Cohen 2001). The latter function of the immune system is called immune reg-
ulation. The suppressing mechanisms for immune regulation act as a double-edged
sword: on the one hand, they prevent from autoimmune diseases, but on the other
hand, they inhibit immune response against cancer (Narendra et al. 2013). Indeed, it is
currently accepted that an aberrant innate and adaptive immune response contributes
to tumorigenesis by selecting aggressive clones, inducing immunosuppression, and
stimulating cancer cell proliferation and metastasis (Gonzalez et al. 2018).

The immune system primarily consists of certain types of white blood cells, called
lymphocytes. Innate immunity includes lymphocytes such as natural killer (NK) cells,
while adaptive immunity includes T and B lymphocytes. Immune regulation involves
a special subset of T cells, called regulatory T cells (Tregs) (Chraa et al. 2019). B cells
also play a part in immune regulation in the form of regulatory B cells (Bregs) (Rosser
and Mauri 2015). Even though the research on Cancer Immunology has been mainly
concentrated on Tregs and NK cells, recently there has been an upsurge in research on
Bregs associated with tumours (see e.g. Guo and Cui 2019 and the references therein).

In this work, we focus on breast cancer andwe study the role of a relatively recently
described (Olkhanud et al. 2009, 2011) subgroup of Bregs, the tumour-evoked Bregs
(tBregs), in the immune response to the aforementioned type of cancer. Breast cancer
is more than a hundred timesmore likely to affect a woman than aman (Fentiman et al.
2006), and it is the most common cause of cancer-related death in women world-wide
(Bray et al. 2018; Ferlay et al. 2019). It is estimated that one in eight women living in
the USA will develop breast cancer in her lifetime (Carol et al. 2014). tBregs protect
metastasizing breast cancer cells from immune effector cells by inducing immune
suppression mediated by Tregs (Biragyn et al. 2014). In a few words, breast cancer
seems to generate tBregs, which in turn increase the proliferation of Tregs, which are
responsible for the death of the tumour-lysing NK cells, leading eventually to lung
metastasis (Olkhanud et al. 2011).

Our study is based on a dynamical system of non-linear ordinary differential equa-
tions. The theory of ordinary differential equations and dynamical systems has been
deployed by scientists in order to gain new insights about the complex interactions
between cancer and the immune system. To this end, several models have been con-
structed for the study of different entities concerning cancer–immune interactions
such as cancer cells, normal cells, cytolytic cells, regulatory cells, cytokines, cancer
cells at different stages as well as various therapies (Kuznetsov et al. 1994; Nani and
Freedman 2000; Pillis and Radunskaya 2003; Villasana and Radunskaya 2003; Byrne
et al. 2004; Khailaie et al. 2013; López et al. 2014; den Breems and Eftimie 2016;
Al-Tuwairqi and Al-Johani 2020; Senekal et al. 2021).

The proposed model is a simplification of a complex one recently introduced in
Bitsouni and Tsilidis (2022). In general, the complexity of the models appeared in
bibliography vary greatly. On the one hand, lower-dimensional and with simpler func-
tional responses models are advantageous in that they allow for the straightforward
application of mathematical techniques, including those of stability and bifurcation
analysis (Szymańska 2003; Bunimovich-Mendrazitsky et al. 2007; Phan and Tian
2017; Ghosh and Banerjee 2018). However, their low dimension inhibits the simulta-
neous investigation of more complex mechanisms that involve multiple components
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of the tumour micro-environment. On the other hand, higher-dimensional models with
complex functional responses are more realistic (de Pillis et al. 2009, 2013; He and
Xu 2017; Makhlouf et al. 2020). However, they are much more difficult to analyse and
canmainly be studied through numericalmethods. Nevertheless, both approaches have
led to significant insights into the biological mechanisms governing tumour–immune
system interactions (Eftimie et al. 2011).

The present study is organised as follows: In Sect. 2, we construct the mathematical
model governing the interactions between breast cancer cells, NK cells, Tregs and
tBregs, forwhichwe prove some basic properties of its solution, necessary for ensuring
the model’s biological relevance, in Appendix A. In Sect. 3, we conduct local stability
analysis using the linearisation theorem, as well as the center manifold theorem for the
cases in which our equilibrium points are non-hyperbolic. In Sect. 4, we investigate
the local bifurcations of our model. In Sect. 5, we perform numerical simulations in
order to confirm our qualitative results and further analyse our model. Finally, in Sect.
6, we sum up and review our results.

2 Model Formulation

In this section, we develop a relatively simple mathematical model in an attempt to
study the interactions between breast cancer cells, NK cells, Tregs and tBregs.

Such a model is a simplification of a complex one, recently introduced in Bitsouni
and Tsilidis (2022), where seven types of interacting cells are considered, i.e. breast
cancer cells, NK cells, Tregs and tBregs, CD8+ T cells, non-Treg CD4+ T cells,
non-Treg CD4+ T cells and non-tBreg B cells. A schematic representation of the
interactions between these seven types of cells is given in Fig. 1.

As a first step towards a simplifiedmodel of Bitsouni and Tsilidis (2022), we follow
(Olkhanud et al. 2011) and we consider only the interactions between breast cancer
cells, NK cells, Tregs and tBregs, which are now depicted in Fig. 2, omitting the rest
of the interactions.

Hence, denoting the populations of those cells as T , N , R and B, respectively, and
considering them as functions of time, t , measured in days, we deduce the following
general system of coupled non-linear ordinary equations:

dT

dt
= fT (T ) + fT ,N (T , N ) ,

dN

dt
= fN (N ) + fN ,R(N , R) ,

dR

dt
= fR(R) + fR,B(R, B) ,

dB

dt
= fB(B) + fT ,B(T , B) ,

where fT , fN , fR and fB stand for the rates of the corresponding cell populations in
the absence of interactions, and on the other hand, fT ,N , fN ,R , fR,B and fT ,B stand
for the additional rates in the presence of interactions.
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Fig. 1 Interactions between the cells in the model described in Bitsouni and Tsilidis (2022). Solid line (—):
Stimulating effect. Dashed line (- -): Inhibiting effect. Dotted line (· · ·): Steady systemic supply. Figure
adapted from Bitsouni and Tsilidis (2022), with the inclusion of the present, yet previously non-depicted,
steady systemic supply (Color figure online)

Fig. 2 Interactions between the cells in the simplified model. Solid line (—): Stimulating effect. Dashed
line (- -): Inhibiting effect (Color figure online)
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We then make the following assumptions:

1. Weutilise the non-interaction termsofBitsouni andTsilidis (2022), i.e.we consider
logistic growth for the breast cancer cell population, while exponential decay of
the rest populations.

2. As far as the interaction terms are concerned:

i. The Treg-induced NK cell inhibition coefficient parameter is eliminated.
Besides, to the best of authors’ knowledge, there are no data concerning its
values in the bibliography. Moreover, the Hill function, which is used to model
the NK-induced breast cancer cell lysis, is replaced by the simpler linear func-
tion. Besides, such a choice is followed in various other models to capture the
same dynamics (see Bitsouni and Tsilidis 2022 and references therein).

ii. We drop the interaction between breast cancer cells and NK cells, i.e. the NK
death mechanism by exhaustion of tumour-killing resources. Besides, in Bit-
souni and Tsilidis (2022) the value of the corresponding parameter is estimated
to be small. Moreover, for the shake of simplicity, we consider linear function
for the modelling of interaction between NK calls and Tregs.

iii. As for the interaction term between Tregs and tBregs, in Bitsouni and Tsilidis
(2022) a linear functionwas used,which involved an intermediate cell type—in
particular, non-Treg CD4+ T cells—that is omitted here.We consider the same
functional response without the presence of any intermediate cell population.

iv. The condition for the interaction between breast cancer cells and tBregs in
Bitsouni and Tsilidis (2022) remains unchanged here.

At the end of the day, the rate of every interaction between two cell populations
is the product of the size of the two populations, i.e. we consider Holling’s type I
functional response for every interacting population.

To sum up, we get the following system of ordinary differential equations:

dT

dt
= aT (1 − bT ) − cNT , (1a)

dN

dt
= σ − θN N − γ RN , (1b)

dR

dt
= κ − θR R + mBBR , (1c)

dB

dt
= −θB B + mT T B , (1d)

for some positive constants a, b, c, σ , θN , γ , κ , θR , mB , θB and mT , along with the
initial condition:

(T (0) , N (0) , R (0) , B (0)) = (T0, N0, R0, B0) ∈ R
4≥0. (2)

Table 1 lists all the parameters of our model, along with a brief description about
each one, as well as their units. We subsequently give an explanation about each term
of our model.
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Table 1 Description and units of the parameters of system (1)

Prm. Description Unit

a Tumour growth rate day−1

b Inverse of the tumour carrying capacity cell−1

c Rate of NK-induced tumour death cell−1· day−1

σ Constant source of NK cells cell · day−1

θN Rate of programmable NK cell death day−1

γ Rate of NK cell death due to Tregs cell−1· day−1

κ Constant source of Tregs cell · day−1

θR Rate of programmable Treg death day−1

mB Rate of tBreg-induced Treg activation cell−1· day−1

θB Rate of programmable tBreg cell death day−1

mT Rate of breast-cancer-induced tBreg activation cell−1· day−1

The first term of the right-hand side of equation (1a) models the logistic growth of
breast cancer cells, while the second termmodels the death of breast cancer cells due to
NK cells. We can show that (see Proposition 15) the set [0, 1/b] is positively invariant
for the component T of the solution of initial value problem {(1), (2)} (from now on:
IVP). Hence, by analogy with the terminology used for the logistic equation, we say
that the (positive) constant 1/b is the tumour carrying capacity for IVP. It expresses
a maximal reachable size due to competition between adjacent cells, e.g. for space or
nutrients (Vaghi et al. 2020). In general, the metastatic potential of a tumour increases
as it reaches its carrying capacity. The conventional linear correlation between primary
tumour size and the likelihood of metastasis (to the lymph nodes or to distant sites) is
questioned, as a characteristic non-linear relationship, with a sigmoid corresponding
curve, has already been described (see e.g. Sopik and Narod 2018 and the references
therein).

As far as equation (1b) is concerned, parameter σ models the steady source of NK
cells. The second term models the natural death of NK cells, whereas the last term
models the Treg-induced NK apoptosis.

Regarding equation (1c), much like equation (1b), parameter κ models the steady
source of Tregs. The second term models the natural death of Tregs, whereas the last
term models the proliferation of Tregs due to tBregs.

Finally, the first term of equation (1d) models the natural death of tBregs, whereas
the last term models their proliferation due to the existence of breast cancer.

3 Equilibria and Stability Analysis

We continue our analysis by finding the equilibrium points of system (1), which we
write as E = (

T , N , R, B
)
. To do so, we equate the right-hand side of (1) to 0 and

solve the resulting system of algebraic equations

123



A Mathematical Study of the Role of tBregs in Breast Cancer Page 7 of 35 112

aT (1 − bT ) − cNT = 0 , (3a)

σ − θN N − γ RN = 0 , (3b)

κ − θR R + mBBR = 0 , (3c)

−θB B + mT T B = 0 . (3d)

Proposition 1 System (1) has three equilibrium points

E1 =
(
0,

a

c1
,

κ

θR
, 0

)
,

E2 =
(
c1 − c

bc1
,
a

c1
,

κ

θR
, 0

)
and

E3 =
(

θB

mT
,− a�1

cmT
,− �2

aγ�1
,
σmT θR (c − c2)

mB�2

)
,

where

�1 := bθB − mT ,

�2 := aθN�1 + cσmT ,

c1 := a (θN θR + γ κ)

θRσ
,

c2 := −�1c1
mT

,

for which we can easily see that c1 > c2 =
(
1 − bθB

mT

)
c1.

Proof From equation (3a), we see that either T = 0 or a(1 − bT ) − cN = 0. In the
case where T = 0, by replacing T = 0 to equation (3d), we get that B = 0, which
we consequently replace to equation (3c) to get R = κ/θR . Replacing the derived
value of R to equation (3b), we get that N = (σθR)/(γ κ + θN θR), which yields the
equilibrium point E1.

We next assume that T �= 0, thus a(1 − bT ) − cN = 0. From equation (3d), we
see that either B = 0 or T = θB/mT . In the case where B = 0, we follow the same
procedure as in the above paragraph to find the values of N and R, which are equal
to their respective counterpart from equilibrium E1. Then, by replacing N to equation
a(1− bT )− cN = 0, we get T = (aγ κ + aθN θR − cσθR)/(abγ κ + abθN θR) which
gives us the second equilibrium point, E2.

Finally, we have the case where T �= 0 and B �= 0. From equation
(3d), we see that T = θB/mT . By replacing it to equation a(1 − bT ) −
cN = 0, we find N = (a (mT − bθB)) / (cmT ). Subsequently, replacing N
to (3b), we get that R = (abθBθN − aθNmT + cσmT )/(aγ (mT − bθB)) and
by replacing R to equation (3c), we find B = (a (mT − bθB) (γ κ + θN θR) −
cσmT θR)/(mB (aθN (mT − bθB) − cσmT )), which gives us the third equilibrium
point, E3. ��
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Since we are only interested in the cases where our variables are non-negative, we
determine the conditions under which the equilibrium points’ coordinates are non-
negative.

Proposition 2 Admissible (i.e. with non-negative components) equilibrium point E1
exists for any set of parameters.

Proof It is evident that the coordinates of E1 are non-negative since all the parameters
are positive. ��
Proposition 3 Admissible equilibrium point E2 exists when c ≤ c1. If c = c1, then
E1 ≡ E2 and if c < c1, then E1 �= E2.

Proof In order for E2 to have non-negative coordinates, the numerator of its first
coordinate needs to be non-negative, thus c1 − c ≥ 0. However, if c1 − c = 0, then the
first coordinate of E2 becomes zero, therefore E1 ≡ E2. Hence, E2 exists and does
not coincide with E1 when c < c1. ��
Proposition 4 Admissible equilibrium point E3 exists when c ≥ c2 and θB

mT
< 1

b . If
c = c2, then E2 ≡ E3 and if c > c2, then E2 �= E3.

Proof Clearly, the first coordinate of E3 is positive. For its second coordinate to be
non-negative, �1 ≤ 0 must hold. However, when �1 = 0, the denominator of the
third coordinate of E3 becomes zero. Therefore, assuming that �1 �= 0, we have that
�1 < 0 or equivalently θB

mT
< 1

b .
Since �1 < 0, then the numerator of the third coordinate of E3 needs to be non-

negative, thus �2 ≥ 0. However, if �2 = 0, then the denominator of the fourth
coordinate of E3 becomes zero. Therefore, assuming that �2 �= 0, we have that
�2 > 0 or equivalently aθN−cσ

abθN
< θB

mT
.

Since we assumed that �2 > 0, for its forth coordinate to be non-negative, c ≥ c2
must hold or equivalently aγ κ+aθN θR−cσθR

abγ κ+abθN θR
≤ θB

mT
.

We need to determinewhich of the two lower bounds of θB
mT

we found is the greatest,

so we can take that as our lower bound for θB
mT

. Let aγ κ+aθN θR−cσθR
abγ κ+abθN θR

<
aθN−cσ
abθN

. It
follows that

aγ κ + aθN θR − cσθR

γ κ + θN θR
<

aθN − cσ

θN
⇔ a − cσθR

γ κ + θN θR
< a − cσ

θN
⇔ γ κ < 0,

which is impossible, therefore we have that aγ κ+aθN θR−cσθR
abγ κ+abθN θR

≥ aθN−cσ
abθN

andwe choose
aγ κ+aθN θR−cσθR
abγ κ+abθN θR

as our lower bound for θB
mT

.

However, when aγ κ+aθN θR−cσθR
abγ κ+abθN θR

= θB
mT

, we have that E2 ≡ E3. Therefore, when

E2 does not coincide with E3, then
aγ κ+aθN θR−cσθR
abγ κ+abθN θR

< θB
mT

, and the proposition is
proved. ��

We next study the local stability of system (1) using the linearisation theorem, as
well as the center manifold theorem in the cases where the equilibrium point is non-
hyperbolic, while also utilising Descartes’ rule of signs in the case where the Jacobian
matrix’s eigenvalues are too complex to be computed.
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We begin by computing the Jacobian matrix of system (1) to be equal to

J(T , N , R, T ) =

⎡

⎢⎢
⎣

a − 2abT − cN −cT 0 0
0 −θN − γ R −γ N 0
0 0 −θR + mBB mB R

mT B 0 0 −θB + mT T

⎤

⎥⎥
⎦ .

Proposition 5 Equilibrium point E1, when it does not coincide with E2, is locally
asymptotically stable (stable node) if c > c1 and unstable (saddle) if c < c1.

Proof At the equilibrium point E1, the Jacobian matrix becomes

J(E1; c) =

⎡

⎢⎢
⎣

a(c1−c)
c1

0 0 0
0 − σc1

a − aγ
c1

0
0 0 − θR

κmB
θR

0 0 0 − θB

⎤

⎥⎥
⎦ , (4)

with corresponding eigenvalues

λ11 (c) = a (c1 − c)

c1
, λ12 = −θB , λ13 = −θR and λ14 = −σc1

a
. (5)

It is clear that the eigenvalues λ12, λ13 and λ14 are always negative since all the
parameters are positive, while λ11 (c) is negative when c > c1 and positive when
c < c1. ��
Remark 1 Note that the corresponding eigenvectors of matrix (4) are

u11 = [
1, 0, 0, 0

]T
, u12 =

[
0,− a2γ κmB

c1θR(θB−θR)(aθB−σc1)
,− κmB

θR(θB−θR)
, 1

]T
, (6)

u13 =
[
0, a2γ

c1(aθR−σc1)
, 1, 0

]T
and u14 = [

0, 1, 0, 0
]T

. (7)

In the case where λ11 is positive, we have that the local stable invariant manifold is tan-
gent to the stablemanifold of the linearised system,which is Es = span{u12,u13,u14},
while the local unstable invariant manifold is tangent to the unstable manifold of the
linearised system, which is Eu = span{u11}, that is the T axis. Biologically, this
means that a small initial number of tumour cells will increase even with the presence
of normal levels of NK cells, Tregs and tBregs.

Proposition 6 Admissible equilibrium point E2, when it does not coincide with E3, is
locally asymptotically stable (stable node) if c > c2 and unstable (saddle) if c < c2.

Proof At the equilibrium point E2, the Jacobian matrix becomes

J(E2; c) =

⎡

⎢⎢⎢⎢
⎣

− a(c1−c)
c1

− c(c1−c)
bc1

0 0

0 − σc1
a − aγ

c1
0

0 0 − θR
κmB
θR

0 0 0 mT (c2−c)
bc1

⎤

⎥⎥⎥⎥
⎦

,
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with corresponding eigenvalues

λ21 (c) = mT (c2 − c)

bc1
, λ22 = −θR , λ23 = −σc1

a
and λ24 (c) = −a (c1 − c)

c1
.

(8)
It is clear that the eigenvalues λ22, λ23 are always negative since all the parameters

of our model are positive. Moreover, λ24 (c) is also negative, since its denominator
is positive and its numerator is positive when E2 exists from Proposition 3. Finally,
λ21 (c) is negative when c > c2 and positive when c < c2. ��
Proposition 7 Admissible equilibrium point E3, when it does not coincide with E2, is
always unstable.

Proof At the equilibrium point E3, the Jacobian matrix becomes

J(E3; c) =

⎡

⎢⎢⎢
⎣

− abθB
mT

− cθB
mT

0 0

0 cσmT
a�1

aγ�1
cmT

0

0 0 aγ κ�1
�2

−mB�2
aγ�1

mT (aγ κ�1+θR�2)
mB�2

0 0 0

⎤

⎥⎥⎥
⎦

,

with its characteristic polynomial being

λ4 + α3λ
3 + α2λ

2 + α1λ + α0 = 0 , (9)

where

α0 = −θB (aγ κ�1 + θR�2)

mT
,

α1 = abcγ κσθB

�2
,

α2 = −a2bγ κθB�1

mT�2
+ cγ κσmT

�2
− bcσθB

�1
,

α3 = −aγ κ�1

�2
− cσmT

a�1
+ abθB

mT
.

We utilise Descartes’ rule of signs to prove our claim. Firstly, let α0 ≥ 0, which means
that

θB

mT
≤ aγ κ + aθN θR − cσθR

abγ κ + abθN θR
= c1 − c

bc1
,

which is impossible when E3 exists and does not coincide with E2 from Proposition 4.
Hence, α0 < 0. Consequently, from Proposition 4, we have that when E3 exists and
does not coincidewith E2, then�1 < 0 and�2 > 0, whichmeans thatα1, α2, α3 > 0.
Next, we apply the transformation

λ 
→ −λ ,
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to (9), to get
λ4︸︷︷︸
+

−α3λ
3

︸ ︷︷ ︸
−

+α2λ
2

︸︷︷︸
+

−α1λ︸ ︷︷ ︸
−

+α0︸︷︷︸
−

= 0 . (10)

The sign changes in the sequence of the polynomial coefficients of (10) are three.
Therefore, (10) has exactly one or three positive real roots, which means that (9) has
exactly one or three negative real roots. In either case, (9) has at least one positive real
root, so it follows that E3 is unstable. ��

We have yet to tackle the cases in which E1 ≡ E2 and E2 ≡ E3. When c = c1,
then λ11 (c1) = 0, and when c = c2, then λ21 (c2) = 0, so in each case a one
dimensional center manifold arises, and the linearisation theorem cannot be used. In
order to determine the dynamics of our system in those two cases, we utilise the center
manifold theorem (Jordan et al. 2007).

Proposition 8 When c = c1, then the equilibrium point E1 ≡ E2 is locally asymptot-
ically stable.

Proof For convenience, we firstly move the equilibrium point to the origin, using the
transformation

T 
→ T + T = T ,

N 
→ N + N = N + a

c1
,

R 
→ R + R = R + κ

θR
,

B 
→ B + B = B .

(11)

After replacing (11) to system (1),while utilising that c = c1,weget the transformed
system

dX
dt

= A1X + P1 , (12)

where

X = [
T , N , R, B

]T
,

A1 := J(E1; c = c1) =

⎡

⎢⎢
⎣

0 0 0 0
0 − σc1

a − aγ
c1

0
0 0 − θR

κmB
θR

0 0 0 − θB

⎤

⎥⎥
⎦

and
P1 = [−abT 2 − c1T N ,−γ RN ,mBBR,mT T B

]T
.

A1 is upper diagonal, and its eigenvalues are λ11 (c1) , λ12, λ13 and λ14, with cor-
responding eigenvectors u11,u12,u13 and u14, as given by (5)-(7).

We bring system (12) to its normal form with the help of the transformation

X = U1Y , (13)
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where we let

Y = [
y1, y2, y3, y4

]T and U1 = [
u11,u12,u13,u14

]
.

By replacing (13) to system (12), we have that

U1
dY
dt = A1U1Y + P1

⇔ dY
dt = U−1

1 A1U1Y + U−1
1 P1

⇔ dY
dt = �1Y + F1 , (14)

where

�1 = diag(λ11 (c1) , λ12, λ13, λ14) and

F1 = [
f11, f12, f13, f14

]T = U−1
1 P

F1 is a function of T , N , R and B. In order to express F1 as a function of y1, y2, y3
and y4, we substitute T , N , R and B from equation (13) to F1, to find that

F1 =

⎡

⎢⎢
⎣

−aby21 + w11y1y2 + w12y1y3 − c1y1y4
mT y1y2

w13y1y2 + w14y22 + mB y2y3
w15y1y2 + w16y2y3 + w17y22 + w18y2y4 + w19y23 + w110y3y4

⎤

⎥⎥
⎦ ,

where w1i , i = 1, 2, 3, . . . , 10 are known constants.
Hence, system (14) can be written in the form

dY
dt

=
[
B1 0
0 C1

]
Y + F1 ,

or equivalently

dy1
dt

= B1y1 + f11 , (15a)
⎡

⎢
⎣

dy2
dt
dy3
dt
dy4
dt

⎤

⎥
⎦ = C1

⎡

⎣
y2
y3
y4

⎤

⎦ +
⎡

⎣
f12
f13
f14

⎤

⎦ , (15b)

where
B1 = λ11 (c1) = 0 and C1 = diag(λ12, λ13, λ14) .

We have that B1 and C1 are constant matrices, with the eigenvalues of B1 having
zero real part and the eigenvalues of C1 having negative real part, whereas f1i is
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smooth with f1i (0, 0, 0, 0) = 0 and Df1i (0, 0, 0, 0) = 0 for i = 1, 2, 3, 4. From the
center manifold theorem, there exists a center manifold which is parametrised by

⎡

⎣
y2
y3
y4

⎤

⎦ = h1(y1) =
⎡

⎣
h12(y1)
h13(y1)
h14(y1)

⎤

⎦ ,

with h1(0) = 0 and Dh1(0) = 0, and satisfying

C1 · h1(y1) +
⎡

⎣
f12(y1,h1(y1))
f13(y1,h1(y1))
f14(y1,h1(y1))

⎤

⎦ = Dh1(y1) · [B1y1 + f11(y1,h1(y1))] ,

while the flow on the center manifold is defined by the differential equation (15a).
Since h1(0) = 0 and Dh1(0) = 0, then by approximating the center manifold with

a Taylor series around 0, we get

h1(y1) =
⎡

⎣
b12y21 + b13y31 + b14y41 + O(y51)
c12y21 + c13y31 + c14y41 + O(y51)
d12y21 + d13y31 + d14y41 + O(y51)

⎤

⎦ . (16)

By replacing (16) to (15a) in order to express the terms of y2, y3, y4 in f11, we get

dy1
dt

= −aby21 + O(y31) . (17)

From Y = U−1
1 X, we see that y1 = T , so y1 is non-negative. That means that 0 is

an asymptotically stable point of equation (17), when approached from y1 ≥ 0 since
−ab < 0. Thus, from the center manifold theorem, 0 is a locally asymptotically stable
equilibrium of system (12), which proves the proposition. ��
Proposition 9 When c = c2, then the equilibrium point E2 ≡ E3 is unstable.

Proof For convenience, we firstly move the equilibrium point to the origin, using the
transformation

T 
→ T + T = T + c1 − c

bc1
,

N 
→ N + N = N + a

c1
,

R 
→ R + R = R + κ

θR
,

B 
→ B + B = B .

(18)

After replacing (18) to system (1),while utilising that c2 = c,weget the transformed
system

dX
dt

= A2X + P2 , (19)
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where

X = [
T , N , R, B

]T
,

A2 := J(E2; c = c2) =

⎡

⎢⎢⎢
⎣

− a(c1−c2)
c1

− c2(c1−c2)
bc1

0 0

0 − σc1
a − aγ

c1
0

0 0 − θR
κmB
θR

0 0 0 0

⎤

⎥⎥⎥
⎦

and
P2 = [−abT 2 − c2T N ,−γ RN ,mBBR,mT T B

]T
.

A2 is upper diagonal, so its eigenvalues are λ21 (c2) , λ22 , λ23 and λ24 (c2) with
corresponding eigenvectors

u21 =
[
aγ κc2mB

bθ2Rσc21
,− a2γ κmB

θ2Rσc21
, κmB

θ2R
, 1

]T
, (20)

u22 =
[

a2c2γ (c1−c2)
bc1(a(c1−c2)−θRc1)(σc1−aθR)

,
a2γ

c1(aθR−σc1)
, 1, 0

]T
,

u23 =
[
− ac2(c1−c2)

b
(
a2(c1−c2)−σc21

) , 1, 0, 0
]T

and u24 = [
1, 0, 0, 0

]T
.

We transform system (19) to its normal form with the help of the transformation

X = U2Y , (21)

where we let
U2 = [

u21,u22,u23,u24
]

.

By replacing (21) to system (19), we get

dY
dt

= �2Y + F2 , (22)

where

�2 = diag(λ21 (c2) , λ22, λ23, λ24 (c2)) and F2 = [
f21, f22, f23, f24

]T = U−1
2 P2 .

By using equation (21) and substituting T , N , R and B to F2, we find that

f21 = w21y
2
1 + w22y1y2 + w23y1y3 − mT y1y4 ,

f22 = w24y
2
1 + w25y1y2 + w26y1y3 − w27y1y4 ,

f23 = w28y
2
1 + w29y

2
2 + γ y2y3 + w210y1y2 + w211y1y3 − w212y1y4 ,

f24 = w213y
2
1 + w214y

2
2 + w215y

2
3 + w216y3y4 + aby24 + w217y2y3

+ w216y2y4 + w217y1y2 + w218y1y3 − w219y1y4 ,
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where w2i , i = 1, 2, 3, . . . , 19 are known constants.
Hence, system (22) can be written in the form

dY
dt

=
[
B2 0
0 C2

]
Y + F2 ,

or equivalently

dy1
dt

= B2y1 + f21 , (23a)
⎡

⎢
⎣

dy2
dt
dy3
dt
dy4
dt

⎤

⎥
⎦ = C2

⎡

⎣
y2
y3
y4

⎤

⎦ +
⎡

⎣
f22
f23
f24

⎤

⎦ , (23b)

where
B2 = λ21 (c2) = 0 and C2 = diag(λ22, λ23, λ24 (c2)) .

We have that B2 and C2 are constant matrices, with the eigenvalues of B2 having
0 real part and the eigenvalues of C2 having negative real part, whereas f2i is smooth
with f2i (0, 0, 0, 0) = 0 and Df2i (0, 0, 0, 0) = 0 for i = 1, 2, 3, 4. By the center
manifold theorem, there exists a center manifold which is parametrised by

⎡

⎣
y2
y3
y4

⎤

⎦ = h2(y1) =
⎡

⎣
h22(y1)
h23(y1)
h24(y1)

⎤

⎦ ,

with h2(0) = 0 and Dh2(0) = 0, and satisfying

C2 · h2(y1) +
⎡

⎣
f22(y1,h2(y1))
f23(y1,h2(y1))
f24(y1,h2(y1))

⎤

⎦ = Dh2(y1) · [B2y1 + f21(y1,h2(y1))] ,

while the flow on the center manifold is defined by the differential equation (23a).
Since h2(0) = 0 and Dh2(0) = 0, then by approximating the center manifold with

a Taylor series around 0, we get

h2(y1) =
⎡

⎣
b22y21 + b23y31 + b24y41 + O(y51)
c22y21 + c23y31 + c24y41 + O(y51)
d22y21 + d23y31 + d24y41 + O(y51)

⎤

⎦ . (24)

By replacing (24) to (23a) in order to express the terms of y2, y3, y4 in f21, we get

dy1
dt

= w21y
2
1 + O(y31) , (25)

with
w21 = c2γ κσmBmT

ab (γ k + θN θR) 2
> 0 .
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From Y = U−1
2 X, we see that y1 = B, so y1 is non-negative. That means that 0 is

an unstable equilibrium point of equation (25), when approached from y1 ≥ 0 since
w21 > 0. Thus, from the center manifold theorem, 0 is an unstable equilibrium point
of system (19), which proves the proposition. ��

Having studied every possible case in which the equilibrium points are biologically
realistic, we conclude with the main result of the present section as follows.

Proposition 10 (Local stability analysis) For the admissible equilibrium points of
system (1), the following facts hold true.

• E1 always exists, and is locally stable when c ≥ c1, and unstable when c < c1.
• E2 exists when c < c1, and is locally stable when c ≥ c2, and unstable when
c < c2.

• E3 exists when c > c2 and
θB
mT

< 1
b , and is always unstable.

• E1 ≡ E2 when c = c1, and E2 ≡ E3 when c = c2.

4 Bifurcation Analysis

Starting off, we prove that, under certain sufficient conditions, IVP has no closed orbits
and therefore a Hopf bifurcation cannot occur.

Proposition 11 (Lack of Hopf bifurcations) If

0 ≤ T0 ≤ 1

b
and

θB

mT
>

1

b
,

then IVP has no closed orbits.

Proof From (1d) along with the non-negativity of the solution (see Proposition 14)
we get that

sgn
dB

dt
= sgn

(
T − θB

mT

)
.

Since T0 ≤ 1/b, we have from Proposition 15 that T ≤ 1/b, as well. Hence, by

θB

mT
>

1

b

weget that B is strictly decreasing, therefore there are no periodic solutions of non-zero
period, i.e no closed orbits. ��

Remark 2 A different way to prove the lack of Hopf bifurcation is by supposing that
there is a periodic solution (T , N , R, B) of period P �= 0, hence every component
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is also a P-periodic function. Then, from (A1) we get that e
∫ t
0 (mT T (s)−θB ) ds is also

P-periodic, and so does

∫ t

0

(
T (s) − θB

mT

)
ds.

From this, along with the fact that mT T − θB is P-periodic, we get that

∫ P

0

(
T (s) − θB

mT

)
ds = 0.

Dealing as before, we have a contradiction, since

T − θB

mT
≤ 1

b
− θB

mT
< 0.

The result of Proposition 10 makes us suspect that two transcritical bifurcations are
happening; one between E1 and E2 when c = c1, and one between E2 and E3 when
c = c2. Indeed, we set the right-hand side of system (1) equal to G, i.e.

G(T , N , R, B) :=

⎡

⎢⎢
⎣

aT (1 − bT ) − cNT
σ − θN N − γ RN
κ − θR R + mBBR
−θB B + mT T B

⎤

⎥⎥
⎦ ,

and we use Sotomayor’s theorem (Perko 2006) to prove our observations.

Proposition 12 (Transcritical bifurcation 1) System (1) experiences a transcritical
bifurcation at the equilibrium point E1 ≡ E2 as the parameter c varies through c1.

Proof The Jacobian matrix of system (1) at E1 ≡ E2, i.e. when c = c1, is given by
A1. From (5) and (6), we see that the eigenvector corresponding to the zero eigenvalue
is u11, whereas simple computations show us that the eigenvector corresponding to
the zero eigenvalue of matrix AT

1 is w1 = [
1, 0, 0, 0

]T.
Furthermore, we have that

∂G(T , N , R, B; c)
∂c

= [−NT , 0, 0, 0
]T

,

D
∂G(T , N , R, B; c)

∂c
u11 = [−N , 0, 0, 0

]T
,

and
D2G(T , N , R, B)(u11,u11) = [−2ab, 0, 0, 0

]T
.

Consequently, when c = c1 we have that

wT
1
∂G(E1; c1)

∂c
= 0 ,
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wT
1

[
D

∂G(E1; c1)
∂c

u11

]
= − a

c1
�= 0 ,

wT
1

[
D2G(E1; c1)(u11,u11)

]
= −2ab �= 0 .

Thus, the conditions of Sotomayor’s theorem are satisfied and the proposition is
proved. ��
Proposition 13 (Transcritical bifurcation 2) System (1) experiences a transcritical
bifurcation at the equilibrium point E2 ≡ E3 as the parameter c varies through c2.

Proof Since

c = c2 ⇔ θB = aθNmT θR + aγ κmT − cσmT θR

abγ κ + abθN θR
=: θ∗

B ,

we prove the equivalent proposition of system (1) experiencing a transcritical bifur-
cation at the equilibrium point E2 ≡ E3 as the parameter θB varies through θ∗

B , as
the conditions of Sotomayor’s theorem cannot be satisfied in the case of parameter c
varying through c2.

We have that the Jacobian of system (1) at E2 ≡ E3, i.e. when θB = θ∗
B , is equal

to A2 = J(E2; c = c2) = J(E2; θB = θ∗
B).

From (8) and (20), we see that the eigenvector corresponding to the zero eigenvalue
is u21, whereas simple computations show us that the eigenvector corresponding to
the zero eigenvalue of matrix AT

2 is w2 = [
0, 0, 0, 1

]T.
Furthermore, we have that

∂G(T , N , R, B; θB)

∂θB
= [

0, 0, 0,−B
]T

,

D
∂G(T , N , R, B; θB)

∂θB
u21 = [

0, 0, 0,−1
]T

,

and

D2G(T , N , R, B; θB)(u21,u21) =
[
0,

2γ 2κ2σm2
B

θ2R(γ κ+θN θR)2
,
2κm2

B
θ2R

,
2cγ κσmBmT
ab(γ κ+θN θR)2

]T
.

Consequently, when θB = θ∗
B we have that

wT
2
∂G(E2; θ∗

B)

∂θB
= 0 ,

wT
2

[
D

∂G(E2; θ∗
B)

∂θB

]
= −1 �= 0 ,

wT
2

[
D2G(E2; θ∗

B)(u21,u21)
]

= 2cγ κσmBmT

ab (γ κ + θN θR) 2
�= 0 .

Thus, the conditions of Sotomayor’s theorem are satisfied and the proposition is
proved. ��

123



A Mathematical Study of the Role of tBregs in Breast Cancer Page 19 of 35 112

Fig. 3 Projection of the bifurcation diagram of system (1) onto the T –c plane. Solid line (—): Stable equi-
librium. Dashed line (- -): Unstable equilibrium.�: Transcritical bifurcation 1.©: Transcritical bifurcation
2. VL: Region in which c is “very low”, i.e. c < c2 when c2 > 0. L: Region in which c is “low”, i.e. c < c1
when c2 < 0 and c2 < c < c1 when c2 > 0. H: Region in which c is “high”, i.e. c > c1 (Color figure
online)

The value and stability of the first coordinate—that is the breast cancer cell
population—at equilibrium, depending on parameter c is given in Fig. 3.

5 Numerical Simulations

In this section, we numerically solve our model, using Julia and the suite Differen-
tialEquations.jl (Rackauckas and Nie 2017), under two antipodal theoretical scenarios
concerning the absence and the presence of tBregs. Contrary to our previous local
stability analysis, numerical simulations help us develop an intuition about the global
behaviour of our model. Additionally, we perform numerical parameter sensitivity
analysis, in order to further explore the dependence of the solution of our model to its
parameters, under different initial conditions of tBregs.

The parameter values used in our simulations are listed in Table 2, unless otherwise
stated, and their derivation is explained in is explained in Appendix B. In particular,
mT either becomes

mT = mA
T := 5 · 10−15 cell−1 · day−1 ,

or
mT = mB

T := 5 · 10−10 cell−1 · day−1 .

Thus, choosing the value mA
T yields θB

mT
> 1

b , whereas choosing the value mB
T yields

θB
mT

< 1
b , allowing us to explore the different dynamics of IVP.

Considering the values of the two bifurcation points of system (1) with respect to
parameter c, we have that c1 = 2.88 · 10−10 cell−1 · day−1, since c1 is independent
from the value ofmT . WhenmT = mA

T , then c2 < 0, as expected from our bifurcation
analysis, whereas when mT = mB

T , then c2 = 5.76 · 10−11 cell−1 · day−1.
Finally, we choose N0 = 5 · 108 cells and R0 = 2 · 108 cells.
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Table 2 Units and values of the parameters of system (1). For estimations arising from literature see
Appendix B

Prm. Unit Value Source

a day−1 0.15 Bitsouni and Tsilidis (2022)

b cell−1 1 · 10−9 Bitsouni and Tsilidis (2022)

c cell−1· day−1 Varied –

σ cell · day−1 5 · 107 Estimated from Zhang et al. (2007)

θN day−1 0.07 Estimated from Zhang et al. (2007)

γ cell−1· day−1 1 · 10−10 Estimated from equilibrium point

κ cell · day−1 1 · 107 Estimated from equilibrium point

θR day−1 0.03851 Estimated from Mabarrack et al. (2008)

mB cell−1· day−1 3 · 10−8 No data found

θB day−1 0.4 No data found

mT cell−1· day−1 Varied –

5.1 The Scenario of Absent tBregs (B0 = 0)

As can be seen from equation (A1), when B0 = 0, we have that B(t) = 0, t ∈ R≥0.
Therefore, system (1) becomes a 3D system with only breast cancer cells, NK cells
and Tregs existing in the body.

Plotting the phase portrait of the resulting 3D system, for different values of c, we
get Fig. 4. We notice that all trajectories move towards an equilibrium point for all c.
This equilibrium point moves along the line

{(T , N , R) ∈ R
3≥0 : N = σθR

γ κ + θN θR
, R = κ

θR
},

with T getting bigger, as c gets smaller, and vice versa. When c > c1, T reaches zero.
We observe the same type of transcritical bifurcation that happens between E1 and E2
when c = c1 for system (1), also happens for the 3D system. Even with no rigorous
result at hand regarding the global stability of IVPwith tBregs no longer in the picture,
it is apparent that for the 3D system the equilibrium point E1 is globally stable when
c > c1 and E2 is globally stable when c < c1. The crux of the scenario in question is:

Conclusion 1a :
In the absence of tBregs, the breast tumour will reach its carrying capacity due to

NK cell insufficiency, i.e. T ↗ 1
b when c ↘ 0.

5.2 The Scenario of Present tBregs (B0 �= 0)

In this section, we study the scenario in which the initial condition of tBregs is not
0. We divide our analysis into three sections: Sect. 5.2.1 in which mT = mA

T and
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Fig. 4 Phase portrait of system (1) with B0 = 0, for different values of c. The equilibrium point (T , N , R)

pictured by the red sphere moves along the black line, which is given by {(T , N , R) ∈ R
3≥0 : N =

σθR
γ κ+θN θR

, R = κ
θR

}. The value of T tends to 0, as c increases, whereas tends to 1
b , as c tends to 0 (Color

figure online)

Fig. 5 Ensemble simulations of IVP, with B0 taking values in the 30-point discretisation of the interval[
0, 5 · 108

]
· cells, T0 = 5 cells, and c = 2 ·10−10 cell−1 · day−1 (regionL). When B → 0, T eventually

tends to T > 0 of E2 (Color figure online)

therefore θB
mT

≥ 1
b , and Sect. 5.2.2 in which mT = mB

T and therefore θB
mT

< 1
b . In

both first sections, we individually study each of the involved regions, VL, L and H,
admitted by our bifurcation analysis and depicted in Fig. 3. In Sect. 5.2.3we investigate
the influence of the rate of NK-induced breast cancer cell death, c, to our model.

5.2.1 Bounded-From-Above Tumour Carrying Capacity ( �B
mT

≥ 1
b )

Here, we show that the dynamics of the solution of IVP are eventually the same with
the ones of the previous scenario. However, there are interesting differences between
the two scenarios.

When mT = mA
T , we have that

θB
mT

≥ 1
b , which means that B is strictly decreasing.

Additionally, only equilibria E1 and E2 exist. Figs. 5 and 6 depict both T and B, for
c in region L and H, respectively. As can be seen in the aforementioned figures, T
forms a single peak, which increases as B0 increases. Such an increase of T continues
until T reaches its carrying capacity, 1

b , and after that it gradually flattens out. The
greater B0 is, the longer T stays close to 1

b , before eventually tending to T of E2.
Consequently, as B0 increases, the metastatic potential becomes higher. This comes
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Fig. 6 Ensemble simulations of IVP, with B0 taking values in the 30-point discretisation of the interval[
0, 5 · 108

]
· cells , T0 = 5 cells, and c = 3 ·10−10 cell−1 · day−1 (regionH). When B → 0, T eventually

tends to T = 0 of E1 (Color figure online)

in agreement with the results of Olkhanud et al. (2011), where tBregs were associated
with breast cancer metastasising to the lungs.

In Fig. 6, T eventually vanishes, instead of tending to a positive value, as in Fig.
5. Thus, in the light of Fig. 4, when B → 0, the dynamics of IVP are similar to the
corresponding ones of the problem with the simplified 3D system for B = 0.

All in all, we reach the following conclusion:

Conclusion 2:
In the presence of tBregs, if tumour carrying capacity is bounded from above, then
the breast tumour will initially reach its carrying capacity due to the effect of tBregs,

i.e. initially T ↗ 1
b when B0 ↗.

5.2.2 Bounded-From-Bellow Tumour Carrying Capacity ( �B
mT

< 1
b )

When θB
mT

< 1
b , B can become an increasing function. Hence, even if tBregs start as

just a few cells, they could cause breast cancer cells to reach their carrying capacity.
Region L
When c = 9 · 10−11 cell−1 · day−1, we have that c2 < c < c1. Depending on the

initial condition of tBregs, the dynamics of IVP vary greatly. When B0 = 5 ·105 cells,
we get Fig. 7. In Fig. 7, we see that tBregs, despite increasing up until around the 20th
day, are unable to continue doing so and are eventually depleted. tBreg levels did not
reach a sufficient population number that would allow breast cancer cells to grow to
their carrying capacity. Instead, breast cancer cells stabilise to equilibrium point E2.

Increasing the initial condition of tBregs to B0 = 5 · 106 cells, we get Fig. 8. In
Fig. 8, we see that when the initial breast cancer cell population is around 6 · 108
cells, tBregs do not get depleted. Additionally, in every simulation where tBregs do
not deplete, they cause breast cancer cells to move away from equilibrium point E2
and reach their carrying capacity.

Region VL
When c = 2 ·10−11 cell−1 · day−1, we have that c < c2. Region VL is a particular

interesting case, since our local stability analysis showed that both E1 and E2 are
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Fig. 7 Ensemble simulations of IVP, with T0 taking values in the 50-point discretisation of the interval[
0, 109

]
· cells, c = 9 · 10−11 cell−1 · day−1 and B0 = 5 · 105 cells. Left: Number of tBregs. Right:

Number of breast cancer cells. We notice that when B0 = 5 · 105 cells, the trajectories of our model move
towards E2 (Color figure online)

Fig. 8 Ensemble simulations of IVP, with T0 taking values in the 50-point discretisation of the interval[
0, 109

]
· cells, c = 9 · 10−11 cell−1 · day−1 and B0 = 5 · 106 cells. Left: Number of breast cancer cells.

Right: Number of tBregs. We notice that, unlike the corresponding simulations of Fig. 7, when B0 = 5 ·106
cells, and if T0 ≥ 6 · 108, then the breast tumour reaches its carrying capacity (Color figure online)

unstable, hence making the dynamics of IVP difficult to determine without numerical
simulations. In Fig. 9, we notice that despite the initial number of tBregs being as
low as B0 = 50 cells, tBregs manage to proliferate. Even though up until around the
200th day breast cancer cells seem to have stabilised at equilibrium point E2, they
proceed to start increasing up until they reach their carrying capacity. An interesting
observation is that tBreg levels need to be around 108 cells in order for breast cancer
cells to reach their carrying capacity, much like the case studied for the scenario of
θB
mT

≥ 1
b in Fig. 6.

Finally, we notice that when tBregs are scarce, even if the initial number of breast
cancer cells is very close to the tumour carrying capacity, breast cancer cells are not
able to maintain their high levels and decrease until they reach E2. However, this
changes when tBregs become around 108 cells, causing breast cancer cells to increase
to their carrying capacity, while also being able to maintain their high numbers.

Region H
When c = 3 · 10−10 cell−1 · day−1, we have that c > c1. In this case, the ability

of NK cells at lysing breast cancer cells is at its highest, so we expect some of our
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Fig. 9 Ensemble simulations of IVP, with T0 taking values in the 50-point discretisation of the interval[
0, 109

]
· cells, c = 2 · 10−11 cell−1 · day−1 and B0 = 50 cells. Left: Number of breast cancer cells.

Right: Number of tBregs. Even though breast cancer cells seem to have stabilised to their corresponding
E2 value for more than 100 days in each simulation, when tBerg levels are about 108 cells (dashed line),
breast cancer cells start increasing again and reach their carrying capacity (Color figure online)

Fig. 10 Ensemble simulations of IVP, with T0 taking values in the 50-point discretisation of the interval[
0, 109

]
· cells, c = 3 · 10−10 cell−1 · day−1 and B0 = 5 · 105 cells. Left: Number of breast cancer

cells. Right: Number of tBregs. We notice that breast cancer cells are quickly depleted from the body when
c = 3 · 10−10 cell−1 · day−1 (c > c1) and B0 = 5 · 105 cells (Color figure online)

simulations to result in the elimination of the tumour. As anticipated, we see that in
Fig. 10, when the initial condition of tBregs is B0 = 5 · 105, breast cancer cells, along
with tBregs, are quickly depleted from the body for all simulations.

However, the same does not hold if the initial number of tBergs is higher. When the
initial condition of IVP becomes equal to equilibrium point E3, which in this case is
equal to

(
8 · 108, 6 · 107, 7.63 · 109, 1.24 · 106) · cells, we get Fig. 11. In Fig. 11, we

observe that when the initial condition of breast cancer cells is lower than the value of
breast cancer cells at E3, the tumour is eliminated, whereas if it is higher, the tumour
reaches its carrying capacity. Naturally, if it is equal to the value of breast cancer cells
at E3, then the solution is constant. Even though the trajectories that move towards the
tumour carrying capacity do not actually move towards an equilibrium point, a sort
of bistability phenomenon appears, as far as the population of breast cancer cells is
concerned.

Throughout Sect. 5.2, we observed the importance of tBergs in the dynamics of
IVP. Each time tBreg levels were sufficiently high, breast cancer cells reached their
carrying capacity. In the presence of tBregs, breast tumour can reach its carrying
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Fig. 11 Ensemble simulations of IVP, with T0 taking values in the 200-point discretisation of the interval[
0, 109

]
· cells, c = 3 · 10−10 cell−1 · day−1 and (T0, N0, R0, B0) = E3 cells. Left: Number of breast

cancer cells. Right: Number of tBregs. We notice that if T0 is higher than the corresponding value of T in
E3 then T ↗ 1

b , whereas if T0 is lower than the corresponding value of T in E3 then T ↘ 0 (Color figure
online)

capacity independently of the value of parameter c. Hence, we reach the following
conclusion:

Conclusion 3:
In the presence of tBregs, if tumour carrying capacity is bounded from below, then
the breast tumour will eventually reach its carrying capacity due to the effect of an

increasing population of tBregs, i.e. T ↗ 1
b when B ↗.

5.2.3 The Importance of c

Our bifurcation analysis, along with our numerical simulations, underlined the impor-
tance of the rate at which NK cells lyse breast cancer cells. A way to numerically
visualise the bifurcation diagram of Fig. 3 is with Fig. 12. In Fig. 12, we let c take
a range of values between 4 · 10−11 and 4 · 10−10 · cell−1 · day−1, while keeping
the initial condition constant. As expected from our stability and numerical analysis,
when c < c1, breast cancer cells increase until they reach their carrying capacity.
Additionally, when c1 < c < c2 equilibrium point E2 is stable, and the value of breast
cancer cells at the equilibrium decreases, as we increase the value of c, until it reaches
0, when c > c2.

Additionally, when the value of c is a bit smaller than c2, our model predicts breast
cancer cells decreasing to a very small, but nonzero, amount. This clinically unde-
tectable population could seize its proliferation, until the tumour micro-environmental
conditions are suitable for its growth. This phenomenon is known as cancer dormancy
and it happens to 20-45% of breast cancer patients (Aguirre-Ghiso 2007).

To sum up, similarly to Conclusion 1a we have that:

Conclusion 1p:
In the presence of tBregs, the breast tumour will reach its carrying capacity due to

NK cell insufficiency, i.e. T ↗ 1
b when c ↘ 0.
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Fig. 12 Ensemble simulations of IVP, with c taking values in the 150-point discretisation of the interval[
4 · 10−11, 4 · 10−10

]
· cell−1 · day−1, mT = mB

T , T0 = 6.5 · 108 cells, and B0 = 50 cells. The

phenomenon of tumour dormancy is evident, since there exist stable equilibrium points where breast-
cancer-cell levels are very low (Color figure online)

5.3 Sensitivity Analysis

In this section, we perform numerical parameter sensitivity analysis in order to bring
light to the dependence of the solution of our model to its parameters. Our approach
is to fix all parameter values but one, which we increase and decrease by 10%, and
measure the percent change of the breast cancer cell population after 200 days, when
compared to the same value, but for our original parameter. We execute this procedure
for four different tBregs initial conditions: B0 = 106, 6 · 106, 11 · 106 and 11.5 · 106
cells. Additionally, we have that T0 = 8 · 108 cells, c = 3 · 10−10 cell−1 · day−1,
mT = 5 · 10−10 cell−1 · day−1.

The results are given in Fig. 13. In most of our experiments, the parameter showing
the biggest sensitivity is, the rate at which NK cells lyse cancer cells, c. The more
we increase c, the biggest the decrease in final tumour size after 200 days, further
supporting Conclusion 1a and Conclusion 1p. Another parameter showing high sen-
sitivity is, the tumour growth rate, a, which is to be expected. Additionally, the rest of
parameters directly involving NK cells, namely, the constant source of NK cells, σ , the
rate of programmable NK cell death, θN , and the rate of NK cell death due to Tregs,
γ , all show considerable high sensitivity, which underlines the anti-tumour effect of
NK cells. As far as the sensitivity of the parameters regarding Tregs is concerned, it
remains almost the same, nomatter the initial conditions of tBregs. On the contrary, the
parameters regarding tBregs, namely, the rate of tBreg-induced Treg activation, mB ,
the rate of programmable tBreg cell death, θB , and the rate of breast-cancer-induced
tBreg activation,mT , all show increasing sensitivity, as we increase the initial number
of tBregs. This comes as a further confirmation of Conclusion 2 and Conclusion 3,
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Fig. 13 Numerical sensitivity of the parameters of IVP,with T0 = 8·108 cells, c = 3·10−10 cell−1 · day−1,
mT = 5 · 10−10 cell−1 · day−1. The percentage change in final tumour size after 200 days is plotted. We
notice that in all experiments, the parameters regarding NK cells show very high sensitivity, whereas the
parameters regarding tBregs show increasing sensitivity as we increase B0 (Color figure online)

since the higher the number of tBregs in the body, the bigger the resulting tumour, and
therefore the probability of cancer metastasis is increased.

6 Conclusion and Discussion

In this study, we developed a model of non-linear ordinary differential equations, with
the goal of capturing the dynamics between breast cancer cells, NK cells, Tregs and
the newly discovered tBregs. An introductory approach was taken place, where the
functional responses of our model were chosen to be linear (i.e. Holling’s type I).

We showed the existence of three biologically realistic equilibria: an equilibrium
with no cancer cells, an equilibriumwith cancer cells and no tBregs, and an equilibrium
with both cancer cells and tBregs. Using the linearisation and the center manifold
theorem, we gave conditions regarding the local stability of each equilibrium.

Using bifurcation analysis, we showed the importance of the rate of NK-induced
tumour death, c,—independently of the presence or absence of tBregs—on the stability
and the existence of the equilibria, which we further proved using our numerical
simulations, arriving at Conclusion 1a and Conclusion 1p.

Moreover, we showed how the sign of θB
mT

− 1
b can change the number of equilibria

of our model and, therefore, the dynamics of breast cancer growth. On top of that, we
proved that when θB

mT
> 1

b , our model has no closed orbits, meaning that breast cancer
will either be cleared by NK cells or stabilise around a constant number.

Additionally, we performed numerical simulations, in which our model was able to
capture some interesting behaviours of breast cancer. On the one hand, breast cancer
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cells decreased for a period of time and after reaching a minimum value, they started
to increase. An opposite behaviour was also observed, with cancer cells increasing
and reaching a peak, after which NK cells finally managed to clear the cancer cell
population (Figs. 8 and 11). On the other hand, our model was able to capture the
phenomenon of cancer dormancy, due to the existence of a stable equilibrium, in
which the number of breast cancer cells is very small (Figs. 3 and 12).

Throughout our numerical simulations, the ability of tBregs to cause breast cancer
cells to reach their carrying capacity was underlined, thus making us reach Conclusion
2 and Conclusion 3. In fact, our simulations showed that without tBregs, breast cancer
cells can only be stabilised around two of the three equilibria admitted by our analysis
(E1 and E2). Furthermore, even in the cases where the tumour micro-environmental
conditions did not allow tBregs to grow, but only decrease—which happens when
θB
mT

> 1
b—a high initial number of tBregs caused breast tumour to reach its carrying

capacity. Thus, the important takeaway of this study is that when tBregs do not exist
in the body, the only way for the breast tumour to reach its carrying capacity is for the
rate of NK-induced breast cancer cell death to be tending to 0, whereas if tBregs exist
in the body, a sufficiently large number of tBregs can cause the breast tumour to reach
its carrying capacity, regardless of the rate of NK-induced breast cancer cell death.
Taking all these into account, a potential tBreg-depleting therapy could minimise the
ability of breast cancer to grow and metastasise.

Finally, our numerical sensitivity analysis emphasisedConclusion 2 andConclusion
3, due to our model’s high sensitivity to the parameter regarding the NK-induced death
of breast cancer cells, as well as the increasing sensitivity to parameters regarding
tBregs, as we increased the initial condition of tBregs.

In spite of our model’s ability to be used as a framework within which we can
study breast cancer growth with respect to NK cells, Tregs and tBregs, there do exist
some limitations. Choosing linear functional responses has the advantage of making
the model easier to approach; however, this makes our results potentially less realistic.
Additionally, as tBregs are recently discovered, data regarding their kinetics do not
currently exist; this drove us to estimate the value of the corresponding parameters.
However, our findings could serve as a catalyst to more research regarding the function
and kinetics of tBregs, which in turn could help further refine the proposed model
and, therefore, the understanding of the role of tBregs in breast cancer growth and
metastasis.
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Appendix

Appendix A Preliminary Results

In this section, we prove that IVP (we remind that this acronym is used for the initial
value problem {(1), (2)}) has a unique solution, which is non-negative for non-negative
initial conditions and for positive parameter values. We also prove that our solution
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is global, i.e. it does not explode for some finite positive value of time t . The above
conditions are necessary in order to assure that IVP yields biologically realistic results.

Proposition 14 (Uniqueness and non-negativity) For every (T0, N0, R0, B0) ∈ R
4≥0,

IVP has a unique (local) solution (T , N , R, B) : [0, τ ) → R
4≥0 for some τ > 0.

Proof It is easy to see that the conditions of the Picard-Lindelöf theorem are fulfilled,
since every function of the right-hand side of system (1) is continuous, just like its
partial derivative with respect to every variable. Thus, we have that there exists a
unique solution to IVP. In fact, we can extended the solution and consider it in the
maximal non-negative interval of existence.

Next, we prove the non-negativity of the solution. Rewriting (1a) in the following
form

dT

dt
(t) + (cN (t) − a)T (t) = −abT 2(t) ,

we notice that we have a Bernoulli equation for the variable T , and thus its solution is

T (t) = T0e
∫ t
0 (a−cN (s)) ds

1 + T0ab
∫ t
0 e

∫ s
0 (a−cN (ξ)) dξ ds

,

which is non-negative, if T0 is non-negative.
Using the fact that σ > 0, we turn our attention to (1b). We have that

dN

dt
(t) > −(γ R(t) + θN )N (t) ,

and using Grönwall’s inequality, we have that

N (t) ≥ N0e
− ∫ t

0 (γ R(s)+θN ) ds ,

which means that N (t) ≥ 0, when N0 ≥ 0.
Using a similar method as above, from (1c) we get

R(t) ≥ R0e
∫ t
0 (mB B(s)−θR) ds ,

which means that R(t) ≥ 0, when R0 ≥ 0.
We then use the separation of variables method to solve (1d) for the variable B. Its

solution is

B(t) = B0e
∫ t
0 (mT T (s)−θB ) ds . (A1)

Clearly, if B0 ≥ 0, then B(t) ≥ 0. ��
Proposition 15 (Boundedness of T ) The set [0, 1/b] is positively invariant for the
component T of the solution of IVP.
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Proof Since the solution of IVP is non-negative, we have from (1a) that

dT

dt
(t) = aT (1 − bT ) − cNT︸ ︷︷ ︸

q1(T )

≤ aT (1 − bT )︸ ︷︷ ︸
q2(T )

.

We assume the following two initial value problems:

dT

dt
= q1(T ), T (0) = T0 ≥ 0 and (A2)

dz

dt
= q2(z), z(0) = 1

b
. (A3)

Assuming that T0 ≤ z(0) = 1/b, and since q1, q2 are Lipschitz functions on R that
satisfy the inequality q1(T ) ≤ q2(T ), from the comparison theorem we have that
T (t) ≤ z(t) for t in the maximal non-negative interval of existence of the solution of
IVP. Solving initial value problem (A3), yields z = 1/b. Hence, T (t) ≤ 1/b, with the
assumption that the initial value of T is smaller or equal to 1/b. ��
Proposition 16 (Globality) If T0 ≤ 1/b, then the solution of IVP is global.

Proof From (1d) and using the fact that T (t) ≤ 1/b, we have that

dB

dt
(t) ≤ −θB B(t) + mT

b
B(t) ,

and by using Grönwall’s inequality, we have that

B(t) ≤ B0e
(
mT
b −θB )t .

Moreover, from (1c) and using the fact that θR R ≥ 0 we get

dR

dt
(t) ≤ κ + mBB(t)R(t) ,

and by using Grönwall’s inequality, we have that

R(t) ≤ emB
∫ t
0 B(s) ds

(
R0 + κ

∫ t

0
e−mB

∫ ξ
0 B(s) ds dξ

)
.

Finally, from (1b) and using the fact that γ RN ≥ 0 we get

dN

dt
(t) ≤ σ − θN N (t) ,

and by using Grönwall’s inequality, we have that

N (t) ≤ σ

θN
− σ

θN
e−θN t + e−θN t N0 .
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Since the solution is bounded on any compact non-negative interval, we deduce its
(positive) globality. ��

Appendix B Parameter Estimation

Herewe explain our reasoning behind our choice of parameters.Most of the parameters
in our model have been chosen based on methods and data that can also be found in
Bitsouni and Tsilidis (2022).

Appendix B.1 The Tumour

Based on the data fitting experiments conducted in Bitsouni and Tsilidis (2022), we
chose the logistic function to model the breast cancer growth, with the tumour growth
rate being a = 0.15 day−1 and the inverse of the tumour carrying capacity being
b = 1 · 10−9 cell−1. The cell lines used for the estimation of these parameters are
CN34BrM, MDA-231 and SUM1315.

Appendix B.2 The NK Cells

Healthy young adults have a total NK production rate of (15 ± 7.6) ·106 cell ·
litre−1· day−1, while healthy older adults have one of (7.3 ± 3.7) ·106 cells · litre−1

· day−1 (Zhang et al. 2007). Since the average amount of blood in the human body is
about 5 litre (Starr et al. 2012), the constant source of NK cells is in the range

σ ∈
[
1.8 · 107 cell · day−1, 1.13 · 108 cell · day−1

]
.

The half-life ofNKcells in humans is 1 to 2weeks (Zhang et al. 2007)which, assum-
ing exponential decayofNKcells, yields a range for θN of ( ln 214 , ln 2

7 ) = (0.049, 0.099).
Here, we choose an NK cells half-life of 11 days with a corresponding programmable
NK death rate of

θN = ln 2

11 day
≈ 6.301 · 10−2 day−1 .

Approximately 4 to 29% of circulating lymphocytes are NK cells (Keohane et al.
2015). The average number of lymphocytes per microlitre is 1000 to 4800 cells (Abbas
et al. 2014), and since the average human has an average of 5 litres of blood, we have
that the total population of lymphocytes in a human is 5·109 to 24·109 cells. Therefore,
the total population of NK cells in blood is Nmin = 2·108 to Nmax = 6.96·109 cells. At
the healthy equilibrium, our model suggests the population of NK cells to be σθR

γ κ+θN θR
,

which means that

Nmin ≤ σθR

γ κ + θN θR
≤ Nmax ⇔ θR(σ − θN )

Nmaxκ
≤ γ ≤ θR(σ − θN )

Nminκ
.

Replacing the minimum value of σ , and the maximum value of θN and κ in the above
inequality yields the minimum value of γ , while replacing the maximum value of
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σ , and the minimum value of θN and κ (we derive a range for κ in Appendix B.3),
yields the maximum value of γ . Finally, after calculating the above two quantities, the
resulting range for the parameter γ is

γ ∈
[
1.796 · 10−12 cell−1 · day−1, 4.52 · 10−9 cell−1 · day−1

]
.

Appendix B.3 The Tregs

For the constant source of Tregs, our model suggests that a healthy organism has
an average number of κ/θR Tregs, since this is the coordinate which corresponds to
Tregs in the healthy equilibrium. From Pang et al. (2013) we get that Tregs are 5 to
10% of the total CD4+ T cells population circulating in blood, while from Abbas
et al. (2014) we get that the percentage of CD4+ T cells among the total population of
circulating lymphocytes ranges from50 to 60%.Hence, the percentage of Tregs among
the total population of circulating lymphocytes is 2.5 to 6%. The average number of
lymphocytes per microlitre is 1000 to 4800 cells (Abbas et al. 2014), and since the
average human has an average of 5 litres of blood, we have that the total population
of lymphocytes in a human is 5·109 to 24·109 cells. Therefore, the total population of
Tregs in blood is 1.25·108 to 1.44·109 cells. Solving the equation

total population of Tregs = κ

θR
,

for κ and replacing the range of values for the total population of Tregs as found above
and the value of θR as found in the following paragraph, we finally get the constant
source of Tregs to be in the interval

κ ∈ [4.8137 · 106 cell · day−1, 5.5454 · 107 cell · day−1] .

The half-life of Tregs is found to be about 18 days (Mabarrack et al. 2008). Thus,
assuming Tregs follow exponential decay we have that

θR = ln 2

18 day
≈ 3.851 · 10−2 day−1.

The rate of NK cell death due to Tregs, γ , is assumed to be

γ = 1 · 10−10 cell−1 · day−1.

Appendix B.4 The tBregs

AsB cells are less studied than T cells andNK cells, we are not able to find the half-life
of Bregs, let alone tBregs, as they are recently discovered. So, we estimate the rate of
programmable tBreg cell death to be around θB = 0.4 day−1.
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The same holds for the rate of breast-cancer-induced tBreg activation, mT , which
we assume it to be either mT = 5.2 · 10−15 cell−1 · day−1 or mT = 5 · 10−10 cell−1 ·
day−1.
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