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tBregs are a newly discovered subcategory of B regulatory cells, which are generated by breast cancer,
resulting in the increase of Tregs and therefore in the death of NK cells. In this study, we use a mathemat-
ical and computational approach to investigate the complex interactions between the aforementioned
cells as well as CD8" T cells, CD4* T cells and B cells. Furthermore, we use data fitting to prove that
the functional response regarding the lysis of breast cancer cells by NK cells has a ratio-dependent form.
Additionally, we include in our model the concentration of rituximab - a monoclonal antibody that has
been suggested as a potential breast cancer therapy - and test its effect, when the standard, as well as
experimental dosages, are administered.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

B cells play an important role in antibody production, regula-
tion of T cells and activation of CD4" T cells (Murphy and
Weaver, 2016). They are characterized by inhomogeneity and
depending on their function are categorized in different classes,
such as plasma cells which produce antibodies (Nutt et al., 2015)
and B regulatory cells (Bregs) which regulate the function of other
immune cells (Rosser and Mauri, 2015).

The relationship between B cells and cancer, even though is as
important as the relationship of T cells and NK cells with cancer,
which is generally more common in scientific research, has only
recently started being studied (Guo and Cui, 2019). In recent years,
the discovery of tumor-infiltrating B cells has sparked new
research regarding their role in cancer (Linnebacher and
Maletzki, 2012). More specifically in breast cancer, the function
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of B cells seems to be very complex and is still debatable with
different studies indicating them either as positive (Mahmoud
et al., 2012; Iglesia et al., 2014; Xu et al.,, 2018) or negative
(Mohammed et al., 2012; Mohammed et al., 2013; Miligy et al.,
2017) mediators of the disease or remaining neutral (West et al.,
2011; Eir6 et al., 2012; Thompson et al., 2016). Due to their big sig-
nificance and rich interactions with breast cancer, tumor-
infiltrating B cells have been characterized as a “new hallmark of
breast cancer” (Shen et al., 2018).

Recent scientific publications (Olkhanud et al., 2009; Olkhanud
et al., 2011; Biragyn et al., 2014), discovered a sub-population of
Bregs, named tumor-evoked Bregs (tBregs), which are being gener-
ated by the existence of breast cancer. tBregs in turn, cause an
increase in Treg population by helping the differentiation of CD4*
T cells to Tregs, which kill NK cells causing breast cancer to metas-
tasize to the lungs.

The authors of Olkhanud et al. (2011) concluded that tBregs
need to be controlled in order for breast cancer to regress, thus,
suggesting the anti-CD20 monoclonal antibody rituximab as a
potential cure for some types of breast cancer. Rituximab targets
the CD20 protein, which is mainly found on the surface of B cells,
binding with it and triggering B cell death (Bosch et al., 2014). It


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2021.111001&domain=pdf
https://doi.org/10.1016/j.jtbi.2021.111001
mailto:vbitsouni@math.uoa.gr
mailto:vtsilidis@outlook.com
https://doi.org/10.1016/j.jtbi.2021.111001
http://www.sciencedirect.com/science/journal/00225193
http://www.elsevier.com/locate/yjtbi

V. Bitsouni and V. Tsilidis

is used to combat blood cancers such as leukaemia and lymphoma,
as well as autoimmune diseases such as rheumatoid arthritis (The
American Society, 2016).

Studies regarding the effect of B cell depletion in cancer have
been mixed. In Kim et al. (2008), mice bearing lung cancer were
depleted of B cells, through the use of an anti-CD20 antibody,
which slowed tumor growth. Additionally, when active
immunotherapy was used in conjunction with the anti-CD20 anti-
body, the authors observed increased anti-tumor effects and CD8"
T cell levels. On the other hand, in Aklilu et al. (2004) the authors
treated fifteen renal cell carcinoma and six melanoma patients
with rituximab and IL-2 and found that B cell depletion produces
no different results on IL-2 therapy. Moreover, in Candolfi et al.
(2011), B-cell-depleted mice bearing glioblastoma and wild-type
mice treated with an anti-CD20 antibody bearing glioblastoma
were given a treatment that induces tumor regression in 60% of
wild-type mice. The treatment completely failed in both classes
of mice, as mice were unable to exhibit clonal expansion of anti-
tumor T cells. Thus, the authors noted that B cells play the role
of antigen presenting cells.

Mathematical models studying the role of B cells in cancer are
scarce. The few published mathematical models that study B cells,
mainly focus on their ability to produce antibodies (Ghosh and
Banerjee, 2018; Dhar and Gupta, 2020) or the relationship between
mature B cells and progenitor B cells in B-cell acute lymphoblastic
leukaemia (Ledn-Triana et al., 2021; Nanda et al., 2013), while as
far as we know, a mathematical model studying their regulatory
activity does not exist.

The goal of this study is to develop a mathematical framework
within which we can investigate the complex interactions between
breast cancer and the immune system, including B cells and tBregs,
in order to get a better understanding of their functions, as well as
investigate the efficacy of a potential B-cell-depletion breast cancer
therapy through the administration of rituximab. To this end, we
derive a new mathematical model consisting of a system of cou-
pled nonlinear ordinary differential equations. In our model, we
describe the interactions between breast cancer cells, NK cells,
CD8" T cells, CD4" T cells, Tregs, B cells and tBregs, as well as the
total concentration of rituximab administered to the organism.

As far as CD8" T cells are concerned, they have been included in
various mathematical models (de Pillis et al., 2005, 2009). The
inclusion of CD8" T cells in our model will allow us to study their
vital role of tumor-lysing, as well as their interactions with Tregs
and non-Treg CD4"* T cells.

Non-Treg CD4" T cells play a big role in anti-tumor immunity
since they induce the proliferation of CD8* T cells, as well as NK
cells through the production of IL-2. They are also activated by B
cells. Furthermore, the process in which tBregs induce the prolifer-
ation of Tregs, relies on tBregs converting non-Treg CD4" T cells to
Tregs. Even though non-Treg CD4" T cells have been studied in var-
ious mathematical models, the models mainly studied their ability
to produce the cytokine IL-2 and not their interactions with other
immune cells (Castiglione and Piccoli, 2007; Anderson et al., 2015;
Wei et al., 2017; Makhlouf et al., 2020), whereas other models that
exist in the literature either study their IL-2 production along with
Treg generation (Robertson-Tessi et al., 2012), or their ability to
induce the proliferation of effector cells (Dong et al., 2014). Hence,
the inclusion of non-Treg CD4" T cells in our model will allow us to
study their rich interactions with other immune cells.

The layout of this study is as follows. In Section 2, we describe
in detail the new mathematical model for tumor-immune interac-

Journal of Theoretical Biology 539 (2022) 111001

tions. In Section 3, we derive the model parameters. In Section 4,
we study the dynamics of our model using numerical simulations.
Finally, in Section 5, we conclude with a summary and discussion
of the results.

2. Mathematical model

In this section, we develop a mathematical model in an attempt
to study the interactions between breast cancer cells and the var-
ious immune cells, including B cells and tBregs, as well as the effect
of rituximab on breast cancer progression.

As the biochemical cascade of events linked with cancer growth
and immune response are vastly complex, we note that there is no
catholic agreement on those events. Therefore, we base our model
on the following published scientific propositions:

1. Breast cancer grows logistically in the absence of an immune
response, as also discussed in Section 3.1.

2. Breast cancer promotes the proliferation of tBregs
(Olkhanud et al., 2011).

3. tBregs promote Treg generation, by converting them from
non-Treg CD4"* T cells (Olkhanud et al., 2011).

4. Tregs kill NK cells, which causes lung metastasis (Olkhanud
et al., 2009; Pedroza-Pacheco et al., 2013).

5. Tregs aggressively suppress the proliferation of CD8* T cells
and non-Treg CD4" T cells, when cocultured (Liyanage et al.,
2002).

6. Tregs inhibit the cytotoxic activity of NK cells (Trzonkowski
et al., 2004).

7. Both NK cells and CD8" T cells directly kill breast cancer cells
(Murphy and Weaver, 2016; Abbas et al., 2014).

8. CD4" T cells improve the efficiency of CD8" T cells in killing
cancer cells (Haabeth et al., 2014).

9. CD4" T cells are required for the generation of CD8" T cells
(Lai et al., 2011; Keene and Forman, 1982).

10. NK cells stimulate the proliferation of CD8" T cells
(Assarsson et al., 2004).

11. CD4" T cells stimulate the proliferation of NK cells by pro-
ducing the cytokine IL-2 (Meropol et al., 1998; Antony and
Restifo, 1997).

12. Rituximab only affects non-tBregs B cells, as tBregs express
CD20 in low levels (Bodogai et al., 2013).

Fig. 1 gives a schematic representation of the interactions
between the cells in our model.

Therefore, our model considers seven cell populations and the
concentration of rituximab. Let us denote by:

o t, the time, measured in days.

e T(t), the total tumor cell population, at time t.

e N(t), the total NK cell population, at time t.

e C(t), the total CD8" T cell population, at time t.

H(t), the total non-Treg CD4" T cell population, at time t.

R(t), the total Treg cell population, at time t.

e B(t), the total non-tBreg B cell population, at time t.

e Br(t), the total tBreg cell population, at time t.

e X(t), the mass of rituximab per blood volume, measured in
micrograms per milliliter, at time t.

Our model consists of the following system of coupled nonlin-
ear ordinary differential equations:
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Fig. 1. Interactions between the cells in system (2.1). Solid line: Stimulating effect. Dashed line: Inhibiting effect.
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% = 035 — 0gB — ¢, TB — 7,X°B, (2.1f)
dB
d_tT = —03,Br + ¢, TB, (2.1g)
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qr = X ), (2.1h)
along with the initial condition:
(T(0),N(0), C(0),H(0), R(0), B(0), Br(0),X(0))

- (T",NO,CO,HO,RO,B",B?,XO) € [0,00)°. 2.2)

Table 1 lists all of the terms of system (2.1), along with a brief
description. We subsequently give a detailed description of each
model term.

In equation (2.1a), the first term, aT(1 — bT), models the logistic

growth of breast cancer. The last term, fdﬁ T, describes the
C

CD8* T cells killing of breast cancer cells. This predation term is
of a Hill form, with the ratio of CD8" T cells to breast cancer cells
as the Hill function variable. It was firstly used in de Pillis et al.
(2005), and subsequently in various other models (de Pillis et al.,
2009; Makhlouf et al., 2020; de Pillis et al., 2013). The lysis rate

of tumor cells due to CD8" T cells seems to be a function of their
ratio, thus this Hill form is able to capture that dynamic (de Pillis
et al., 2005).

The second term, —ce—*#R

SNTP+N°
due to NK cells with Treg inhibition. We have used the function
e "R to model the Treg inhibition of NK-induced breast cancer cell
lysis, as it is positive and it does not affect the lytic activity of NK
cells when there are no Tregs. It has also been used in de Pillis et al.

(2013) for the same reasons. The Hill function CSNT’XLN‘,

T, models the breast cancer lysis

is used in the

same way as d—S— is used to model the NK-induced breast cancer

scTlc!
cell lysis. The simpler functional response function cN is used in
various other models to capture the same dynamic (de Pillis
et al.,, 2005, 2009). Nevertheless, data from Shenouda et al.
(2017) show us that this Hill term seems to be able to capture
the NK-induced breast cancer lysis more accurately. For a more
in-depth discussion, see Section 3.2. Modeling the lytic activity of
NK cells using a Hill function is a novel approach, since as far as
we know there does not exist a model using this rational Hill form
for this purpose.

In equation (2.1b), the first term, oy, represents the constant
source of NK cells from the organism, whereas the second term,
—0yN, represents the natural NK cell death. The third term,
—pTN, represents the inactivation of NK cells after interacting with
tumor cells. A similar inactivation term has been used in Kuznetsov
et al. (1994) for the case of CD8* T cells and in other models for the
NK cells case such as in de Pillis and Radunskaya (2003) and
Makhlouf et al. (2020). The forth term, —yyR™N, is used to model
the Treg-induced NK apoptosis. The form of this term is derived
from data fitting experiments based on data from Shenouda et al.
(2017). For a more in-depth discussion, see Section 3.2. The last
term, KHN, is used to model the fact that NK cells proliferate in
the presence of the cytokine IL-2 (Meropol et al., 1998). Since
non-Treg CD4" T cells are the main producers of IL-2 (Antony
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Table 1
Description of the terms of system (2.1).

Deriv. Term Description

ar aT(1 - bT) Logistic tumor growth
—ce R sNTIow =T NK-induced tumor death with Treg inhibition
d-< T CD8" T-induced tumor death
scT'+C
% ON Constant source of NK cells
—OyN Programmed NK cell death
—pTN NK death by exhaustion of tumor-killing resources
PNRVN Treg-induced NK apoptosis
KHN CD4* T-induced NK cell proliferation
% ac Constant source of CD8'T cells
—0cC Programmed CD8'T cell death
—qTC CDS8'T cells death from exhaustion of tumor-
killing resources
—y¢RC Suppression of the proliferation of CD8" T cells by
Tregs
rNT CD8" T cell recruitment due to NK-lysed tumor
debris
kijTC Activation of CD8" T cells due to the presence of
breast cancer cells
WZI‘F:{ c CD4" T-induced CD8" T proliferation
L oy Constant source of non-Treg CD4" T cells
—OyH Programmed non-Treg CD4" T cell death
inT BH CD4" T cell recruitment due to breast cancer, with
ky+T
B cell help
—c1HBr Differentiation of non-Treg CD4" T cells to Tregs
due to tBregs
% OR Constant source of Tregs
—0gR Programmed Treg death
c1HBy Differentiation of non-Treg CD4" T cells to Tregs
due to tBregs
dB op Constant source of non-tBreg B cells

—0pB Programmed non-tBreg B cell death

—c,TB Breast-cancer-induced differentiation of non-
tBreg B cells to tBregs
—yBXZB Rituximab-induced non-tBreg B cell apoptosis
dB, —0p,Br Programmed tBreg death

c,TB Breast-cancer-induced differentiation of non-
tBreg B cells to tBregs

—0xX Excretion of rituximab
v(t) Rituximab injection

sk

and Restifo, 1997), we use this term as a proxy due to our model
not including IL-2.

In equation (2.1c), the first term, o, represents the constant
source of CD8* T cells from the organism, whereas the second term,
—0cC, represents the natural CD8" T cell death. The third term, —qTC,
represents the inactivation of CD8"* T cells due to their interaction
with breast cancer cells. It has been used in various models, such
as in Kuznetsov et al. (1994) and de Pillis and Radunskaya (2003).
The forth term, —).RC, is used to model the suppression of CD8" T
cell proliferation by Tregs. In Liyanage et al. (2002), the authors
found that when coculturing CD8" T cells with Tregs taken from
pancreatic and breast cancer patients, Tregs suppressed the prolif-
eration of CD8" T cells. The fifth term, rNT, represents CD8" T cell
recruitment due to the debris from tumor cells lysed by NK cells
(Assarsson et al., 2004; Huang et al., 1994) and has been used in var-

ious models (de Pillis et al., 2005; Makhlouf et al., 2020). The sixth
term, kfc% C, models the activation of CD8" T cells due to the presence
of breast cancer cells and is included since CD8" T cells are part of
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the adaptive immune system. It has the same form as in

Kuznetsov et al. (1994). The final term, ”’Zﬂ C, represents the CD4"
T-cell-induced CD8" T cell proliferation and it has a Michaelis-Men-
ten form. CD4" T cells can directly help the activation of CD8" T cells
through cell-cell interactions via the CD40-CD154 signal pathway
or indirectly through the production of IL-2 (Lai et al., 2011).

In equation (2.1d), the first term, oy, represents the constant
source of non-Treg CD4" T cells from the organism, whereas the
second term, —0yH, represents the natural non-Treg CD4" T cell

death. The third term, kj:IT BH, represents the proliferation of
non-Treg CD4" T cells due to the existence of breast cancer and
is included since CD8" T cells are part of the adaptive immune sys-
tem. Non-tBreg B cells appear in this term as they activate non-
Treg CD4" T cells, acting as antigen presenting cells and thus with-
out them, non-Treg CD4" T cells would not get activated. The last
term, —c,HBr, represents the differentiation of non-Treg CD4* T
cells to Tregs due to tBregs (Olkhanud et al., 2011). As non-Treg
CD4" T cells are converted to Tregs and Tregs do not seem to play
a part in this conversion, we choose to only include the non-Treg
CD4" T cells and tBregs in this term. In Eq. (2.1d), this term has a
negative sign since non-Treg CD4" T cells are decreasing during
this procedure.

In equation (2.1e), the first term, oy, represents the constant
source of Tregs from the organism, whereas the second term,
—0gR, represents the natural Treg death. The last term, ¢;HBr, rep-
resents the conversion of non-Treg CD4" T cells to Tregs. This term
is the opposite of equation’s (2.1d) corresponding conversion term,
since Tregs are increasing during this procedure and we want the
two terms to have the same absolute value, because the same
number of non-Treg CD4" T cells that are lost, become Tregs.

In equation (2.1f), the first term, o, represents the constant
source of non-tBreg B cells from the organism, whereas the second
term, —0pB, represents the natural non-tBreg B cells death. The
third term, —c,TB, represents the breast-cancer-induced differenti-
ation of non-tBreg B cells to tBregs (Olkhanud et al., 2011). Just like
the conversion term c;HBr in Egs. (2.1d) and (2.1e), we only
include non-tBreg B cells and breast cancer cells in this term as
only these two seem to play a role in the conversion. In Eq.
(2.1f), this term has a negative sign since non-tBreg B cells are

decreasing during this procedure. The last term, —yBXZB, represents
the rituximab-induced non-tBreg B cell apoptosis. The trophic
function of this term is chosen to be of power form, since the term
gets zeroed when there is no rituximab in the organism and
because it makes a good fit to data found in Tobinai et al. (1998)
and Cooper et al. (2004).

In equation (2.1g), there is no intrinsic growth term, since we
assume that tBregs do not exist in the organism in the absence of
breast cancer. The first term, —0g,Br, represents the natural tBreg
cell death. The last term, c,TB, represents the differentiation of
non-tBregs B cells to tBregs. This term is the opposite of equation’s
(2.1f) corresponding conversion term since tBregs are increasing
during this procedure and we want the two terms to have the same
absolute value, since the same number of non-tBreg B cells that are
lost, become tBregs.

In equation (2.1h), the first term, —0xX, represents the excre-
tion of rituximab from patients. The last term, #(t), is a function
of time that models the mass of rituximab per liter of blood that
gets infused into a patient per amount of time and is measured
in

/g
mL-day*

3. Parameter estimation

In this section, we carefully determine the model parameters.
Since the model features a large amount of parameters, we use dif-
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ferent methods in order to determine them, such as finding their
value in biological literature, data fitting them based on biological
research, calculating them based on the biological homeostasis
states we found in Appendix A, borrowing them from other math-
ematical models or estimating them in order for our model to exhi-
bit biological reasonable results. Below we give a detailed
explanation about each parameter. A summary of the description
and value of each parameter of the model can be found in Table 5.

3.1. The tumor

The breast cancer growth rate, a = 0.17 day !, and inverse of
carrying capacity, b = 107" cell?, are found using Mathematica’s
NonlinearModelFit function to fit the logistic growth equation
to breast tumor growth data from NSG mice found in
Puchalapalli et al. (2016). The authors of Puchalapalli et al.
(2016) compared the growth and metastasis of three different
breast cancer cells lines, namely CN34BrM, MDA-231 and
SUM1315 cell lines, on athymic nude mice and NSG mice. The dif-
ference between the two kinds of mice is that the former lack T
cells, since they are athymic, while their innate immunity is intact
meaning that they still have NK cells. On the contrary, NSG mice
not only are depleted of T cells, but also of B cells, while their NK
activity is extremely low, therefore having impaired innate immu-
nity. As can be seen in Fig. 1 in Puchalapalli et al. (2016), the study
showed that tumor growth in NSG mice was greater compared to
athymic nude mice, therefore providing a better model of breast
cancer growth in an immunodeficient organism. Even though sim-
ilar data fitting experiments have already been conducted
(Sarapata and de Pillis, 2014), we choose to run our own data fit-
ting experiments due to the superiority of NSG mice versus athy-
mic mice or BALB/c mice - which have the same immune cells as
athymic nude mice (Charles River Laboratories, 2021) - like the
ones in which the authors of Sarapata and de Pillis (2014) have
based their data fitting experiments on.

Two of the most common mathematical models used to capture
the growth of cancer cells are the logistic model

CN34BrM

BCa Cells (-108)
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dp _ p _

=P(1-%): PO =ps, 3.1
and the Gompertzian model (de Pillis and Radunskaya, 2014)

dp K

afrplng, p(0) = py, (32)

where r is the intrinsic growth of the population and K is its carry-
ing capacity.

Before we fit the two models to the data, we need to convert the
data from tumor volume to total number of cancer cells that exist
in each tumor volume. We use the same method as in de Pillis et al.
(2013). Assuming a spherical tumor cell diameter of approximately
15.15um yields a tumor cell volume of approximately

1.82-10°um3. Converting the data points from Fig. 1 in
Puchalapalli et al. (2016), from mm? to um?® and dividing them
by the tumor cell volume calculated, yields the total cancer cell
number in each tumor volume.

The results from fitting the above two growth models to the
data from Puchalapalli et al. (2016) for the three breast cancer cell
lines, are summarized in Fig. 2 and Table 2. As we can see in Fig. 2,
both models make a very good fit to the data, which is consistent
with the results from Sarapata and de Pillis (2014). With that in
mind and considering that the logistic model is simpler and would
make analysis easier, we pick the logistic over the Gompertzian
function for our model.

Finally, we choose the value of breast cancer growth rate to be
the round up maximum value found by our data fitting experi-
ments, that is 0.16835 day~'. On the other hand, we chose the
inverse of the carrying capacity to be a bit smaller than the lowest
value found in our data fitting experiments which is approximately
2.8-107" cell . Our reasoning for doing so is because we want to
study the case of an aggressive breast cancer.

The value range for the maximum rate at which NK cells lyse
cancer cells, c, the value of (#)" for half-maximal NK toxicity, sy,
and the Hill coefficient, 5, are determined through data fitting
experiments based on data from Shenouda et al. (2017). In that

MDA-231

BCa Cells (-10%)

Days Days
SUM1315

3.0
> 25}
i
~ 20|
g2
) 15
o 1.0 |-
S

0.5 |-
[as)]

00 e t t t T i 1 | I I | ! I
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Days
Logistic Gompertz @ Data

Fig. 2. Fitting of the logistic and Gompertzian growth models to data from Puchalapalli et al. (2016).
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Table 2

Parameter values for the logistic and Gompertzian model.

Cell Line Logistic Model Gompertzian Model
Growth Rate  Carrying Cap.  Growth Rate  Carrying Cap.
CN34BrM  0.16511 7.58.108 0.0513 1.05-10°
MDA-231  0.16835 1.03-10° 0.0328 3.6.10°
SUM1315  0.06554 3.39.10° 0.007 4.92.10"

study, the authors collected blood samples from normal donors
and female breast cancer patients. The NK cells collected from their
blood were expanded and subsequently placed in wells, along with
either 2-10° cells of the triple negative breast cancer cell line
MDA-MB-231 or 4-10° cells of the HER2-positive breast cancer
cell line MDA-MB-453, at various ratios. After 4-5 h the percent-
specific lysis of breast cancer cells by NK cells was calculated.
Assuming, that both cell populations are not able to grow inside
the wells due to the lack of nutrients and space, we can use the fol-
lowing initial value problem to model the described phenomenon:

T famre. 10)=T, (3.3
‘:l_’:’ — _0uN(t), N(0) = ratio - T, (3.3b)

where T is the breast cancer cell population, N is the NK cell popu-
lation, Oy, is the rate of natural NK cell death in vitro, T is the initial
number of breast cancer cells, ratio is the ratio of NK cells to breast
cancer cells and f(T, N) is the trophic function describing the killing
of breast cancer cells by NK cells.

Using data from Fig. 5 in Olkhanud et al. (2009) we get that
Oy, = 0.7414 day~' (see Appendix B for more on how to calculate
the turnover rate in vitro).

As far as the trophic function f(T, N) is concerned, we use three
different functions in order to determine which one makes the best
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fit and is therefore able to capture the dynamics of NK cells killing
breast cancer cells more accurately. We use a power form, a
rational Hill form and a Michaelis—-Menten form, thus during our
data fitting experiments the trophic function f(T,N) takes one of
the following forms:

N? N

— 0 p— f—
f(T,N)=cN’ or = =5

C———— 3.4
T (34)

Using Mathematica’s ParametricNDSolveValue function, we
are able to solve problem (3.3) numerically and get the percent-
specific lysis of breast cancer cells by NK cells as a function of
the form

1 — T(tfina)

v (3.5)

where tsq = 5/24 days, since we assume that authors kept the cells in
the wells for 5 h. Function (3.5) depends on the parameters of problem
(3.3),as well as the ratio. We then pass function (3.5) on to Mathemat-
ica’s NonlinearModelFit function, which allows us to fit function
(3.5) to the percent-specific lysis of breast cancer cells by NK cells
expanded from breast cancer patients data taken from Fig. 2 in
Shenouda et al. (2017), with ratio as the independent variable.

The percent-specific lysis curves predicted by problem (3.3)
along with the distance to data at each data point are given in
Fig. 3. Table 3 lists the parameters determined from our data fitting
experiments. As we can see in Fig. 3, the rational Hill form makes
the best fit regarding both breast cancer cell lines. Although the
rational Hill form has one more variable and is therefore easier
to be fitted, both breast cancer cell lysis curves seem to exhibit a
saturation effect as the ratio gets larger, hence it is natural for
the rational Hill form to make a better fit.

In de Pillis et al. (2005), a similar data fitting experiment was
conducted, in which it was found that the power form, and more
specifically a linear function, makes a very good fit in the case of
NK cells lysing YAC-1 tumor cells. Different forms of the functional
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Fig. 3. Left: Lysis curves of breast cancer cells by NK cells predicted by fitting the parameters of problem (3.3) to data from Shenouda et al. (2017). Right: The residuals at each

data point.
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Table 3
Parameter values admitted from data fitting problem (3.3) to data from Shenouda
et al. (2017).

MDA-MB-231/luc MDA-MB-453
Power Form
c 1.462-1077 2.07-107°
5 1.2089 0.7883
Rational Form
c 11.2263 19.6448
5 1.33332 0.8249
sy 39.222 3.85119
Michaelis-Menten Form
c 55.0679 22.858
0 1.8547 - 107 1.23545 - 10°

response function were not tested. This contrast between de Pillis
et al. (2005) and our simulations could be explained in two ways.
Firstly, YAC-1 is a lymphoma cell line, unlike the two breast cancer
cell lines we used in our simulations. Thus, it seems that NK cells
lyse different cancer cell types in different ways. Secondly, as we
already discussed, the cell lysis data we used in our simulations
seem to exhibit a saturation effect as the ratio of NK to breast cancer
cells gets larger, something that is not true with the respective data
used in de Pillis et al. (2005), which also explains the difference
between the outcomes of de Pillis et al. (2005) and our simulations.

In our numerical simulations we vary those three parameters in
order to study their effect on the breast cancer-immune dynamics.

The Treg-induced NK cell inhibition coefficient, iz =1-107®
cell, is found to give the best fit to known data.

The maximum rate at which CD8" T cells lyse cancer cells,

d = 1.7 day~', the value of (%)' for half-maximal CD8" T cell toxicity,

sc =3.5-1072, and the Hill coefficient, [ = 1.7, are borrowed from
de Pillis et al. (2013), in which the authors derived the value of
these parameters using data found in Diefenbach et al. (2001)
and Dudley et al. (2002).

3.2. The NK cells

The constant source of NK cells, oy = 1.13 - 108 cells - day !, is
taken from Zhang et al. (2007). In that study, the authors found
that healthy young adults have a total NK production rate of
(15+7.6)-10° cells - litre™! - day~', while healthy older adults
have one of (7.3 +3.7) - 10° cells - liter™! - day~"'. Considering that
the average amount of blood in the human body is about 5 liters
(Starr et al., 2012) and choosing the maximum NK production rate,
we get the value of oy.

The rate of programmable NK cell death, 0y = 0.06301 day " is
found by assuming the exponential decay of NK cells. Furthermore,
the half-life of NK cells in humans is 1 to 2 weeks (Zhang et al.,
2007). Here, we choose an NK cell half-life of 11 days with a corre-

sponding programmable NK death rate of
On = 122 ~ 0.06301 day .

The rate of Treg-induced NK cell apoptosis, y, = 10°° cell ™ .
day~!, and NK cell resistance to Treg-induced apoptosis coefficient,
Sy = 0.5, is determined by fitting data found in Olkhanud et al.
(2009). In particular, the authors of Olkhanud et al. (2009) cultured
NK cells along with Tregs in wells, at various ratios. After 16 h, the
apoptosis of NK cells was assessed. Assuming, that both cell popu-
lations are not able to grow inside the wells due to the lack of
nutrients and space, we can use the following initial value problem
to model the described phenomenon:
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= 0N ~ FNRING), N(O) = N, (3.62)
% — _0,R(t), R(0) = ratio- N, (3.6D)

where N is the NK cell population, R is the Treg population, 0, is the
rate of natural NK cell death in vitro, 0, is the rate of natural Treg
death in vitro, N is the initial number of NK cells, ratio is the ratio
of Tregs to NK cells and f(N, R) is the trophic function describing the
killing of NK cells by Tregs.

From Fig. 1a in Mahnke et al. (2007), we notice that, in vitro, the
percentage of Treg reduction after 24 h is approximately 18%.
Therefore, we have that 0g ~ 0.1985 day~'. From Fig. 5A in
Olkhanud et al. (2009), we notice that, in vitro, the percentage of
NK cell reduction after 16 h is approximately 39%. Therefore, we
have that 0y, ~ 0.7414 day' (see Appendix B for more on how
to calculate the turnover rate in vitro).

Since the authors of Olkhanud et al. (2009) do not specify the
initial number of NK cells that were put in the wells, we assume
it to be 5-10° a number of the same order of magnitude as the
number of NK cells at homeostasis state we found in Appendix A.
Choosing the following three trophic functions:

NOW

— 0
f(N,R) = yyN* or SR LN

=N :VN—éNI_\{_N, (3.7
and following the same procedure we used for the NK-induced lysis
of breast cancer cells in Section 3.1, we get that the lytic curves pre-
dicted by problem (3.6) are given in Fig. 4, whereas parameter val-
ues are given in Table 4. As we can see in Fig. 4, the power form and
rational form make the greatest fit. Since the power form is simpler,
we choose it over the rational form. For further simplicity, we round
parameters y, and dy in order to finally get y, = 107° cell ™ . day
and oy = 0.5.

The rate of CD4" T cell-induced NK
K=1.63-10"" cell”' -day ', is derived by assuming Eq. (2.1b) at
the zero-tumor equilibrium. When =0, we have that
0N — OnNo — YyRI¥No + KHoNo = 0 and by solving for x we derive
its value.

The rate of NK cell death due to tumor interaction,
p=466-10""2cell ' -day ', is derived by assuming Eq. (2.1b) at
the high-tumor equilibrium. When =0, we have that
oy — OnNy — pTN; — pyRN; + kH;N; =0 and by solving for p
we derive its value.

activation,

3.3. The CD8" T cells

The constant source of CD8" T cells, gc = 3 - 107 cells - day ', is
taken from Hellerstein et al. (1999). In that study, the authors
found that the mean value of the absolute proliferation of CD8" T
cells is 5.9 cells - day - uL~'. Assuming that the average human
has 5 liters of blood and converting the absolute proliferation of
CD8" T cells to cells - day ™' and rounding the result up, yields the
value of oc.

The rate of programmable CD8" T cell death, 6 = 0.009 day?,
is found by assuming exponential decay of CD8" T cells and taking
their half-life to be 77 days, as found in Hellerstein et al. (1999).

Hence, 0c = 771"7(1233, ~ 0.009 day .

The rate of CD8" T cell death due to tumor interaction,
q=3.422-10" cell ! - day !, is borrowed from Kuznetsov et al.
(1994) in which the authors derived the value from mouse data
and a general effector cell and cancer cell population.

The rate of Treg-induced CD8" T cell death,

9 =10"%cell™" - day™", is an ad hoc value that has been chosen
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Fig. 4. Left: Lysis curves of NK cells by Tregs predicted by fitting the parameters of problem (3.6) to data from Olkhanud et al. (2009). Right: The residuals at each data point.

Table 4
Parameter values admitted from data fitting problem (3.6) to data from Shenouda
et al. (2017).

Power Form

VN 2.92131.10°°
SN 0.499502

Rational Form

YN 5.15405 - 10'°
SN 0.478213
SR 2.93734-10"!

Michaelis-Menten Form

o 0.604742
on 1.02378 - 10"

to give reasonable biological results due to the lack of data regard-
ing the death of CD8* T cells due to Tregs.

The rate of CD8" T cell activation due to NK lysed tumor cell
debris, r=1.05-107"° cells - day !, is derived by assuming Eq.
(2.1c) at the high-tumor equilibrium. When 4¢ = 0, we have that
oc — 0cCq — qT1C1 — '))CR1C1 +1rN.T, +ﬁc1 + ’7’1]5"}1 Ci=0 and by
solving for r we derive its value.

The rate of CD8" T cell recruitment due to cancer,
je=1.245-10"" day~', and the breast cancer cell number for
half-maximal CD8" T «cell recruitment due to cancer,
ke =2.019-107 cells, are borrowed from Kuznetsov et al. (1994)
in which the authors derived the value from mouse data and a gen-
eral effector cell and cancer cell population.

The rate of CD8" T cell recruitment due to CD4" T cells,
n, = 2.48 day!, is derived by assuming Eq. (2.1c) at the zero-
tumor  equilibrium. When =0, we have that
oc — 0cCo — PcRoCo + ”’Zﬂljo Co =0 and by solving for #; we derive
its value.

The CD4" T cell number for half-maximal CD8* T cell recruit-
ment due to CD4"* T cells, 5, = 2.5036 - 10° cells, is an ad hoc value
that has been chosen to give reasonable biological results due to
the lack of data regarding the activation of CD8" T cells by CD4*
T cells.

3.4. The CD4" T cells

The constant source of CD4* T cells, oy = 2.2 - 107 cells - day™!,
is derived by assuming Eq. (2.1d) at the zero-tumor equilibrium.

When 4 = 0, we have that ¢y — 0yHo = 0 and by solving for gy
we derive its value.

The rate of programmable CD4" T cell death, 0y = 0.00797
day~!, is found by assuming exponential decay of CD4" T cells
and taking their half-life to be 87 days, as found in Hellerstein

et al. (1999). Hence, 0y = gi2- ~ 0.00797 day .

The breast cancer cell number for half-maximal CD4" T cell
recruitment due to breast cancer, ky = 2.5036 - 10° cells, is an ad
hoc value that has been chosen to give reasonable biological results
due to the lack of data regarding the recruitment of CD4" T cells
due to breast cancer cells.

The rate of CD4" T cell recruitment due to breast cancer,
ju=4.45.10"2 cell™! - day~!, is derived by assuming Eq. (2.1d)
at the high-tumor equilibrium. When 4 =0, we have that
oy — OyH, +k’:TT;]BlH1 —ciHBr, =0 and by solving for j,; we
derive its value.

The rate of differentiation of CD4" T cells to Tregs,

c1=121-10" cell ' - day ', is derived in Section 3.5.
3.5. The Tregs

The constant source of Tregs, og = 9.24-10° cells - day?, is
derived by assuming Eq. (2.1e) at the zero-tumor equilibrium.
When % =0, we have that o; — 0gRy = 0 and by solving for oy
we derive its value.

The rate of programmable Treg death, 0z = 0.03851 day ', is
found by assuming their half-life to be 18 days, as found in
Mabarrack et al. (2008). Thus, assuming Tregs follow exponential

decay we have that 0z = {12 ~ 0.03851 day .
The rate of differentiation of CD4" T cells to Tregs,
€1 =121-10"" cell ' - day ', is derived by assuming Eq. (2.1e)
at the high-tumor equilibrium. When 9%=0, we have that
ok — 0rR1 + c1H1Br, = 0 and by solving for ¢; we derive its value.

3.6. The B cells

The constant source of non-tBreg B cells, g3 = 3.16 - 10 cells -
day~!, is derived by assuming Eq. (2.1f) at the zero-tumor equilib-
rium. When j—f = 0, we have that o3 — 0By = 0 and by solving for
og we derive its value.

The rate of programmable non-tBreg B cell death, 0z = 0.0395
day !, is derived from data taken from Macallan et al. (2005). In
that study, the authors measured the half-life of the whole B cell
population among 12 healthy donors aged between 19 and 85 years
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Table 5
A list of model parameters along with their description, value, units and source.

Par. Description Value Units Source

a Breast cancer growth rate 0.17 day~! Data fitting from Puchalapalli et al. (2016)

b Inverse of breast cancer’s carrying capacity 10710 cell™! Data fitting from Puchalapalli et al. (2016)

AR Treg-induced NK cell inhibition coefficient 1078 cell! No data found

c Rate at which NK cells lyse breast cancer cells [11.2263, day™! Data fitting from Shenouda et al. (2017)
19.6448]

d Hill coefficient measuring the steepness of the NK cell toxicity curve [0.8249, - Data fitting from Shenouda et al. (2017)
1.33332]

SN Value of (%'ﬁ for half-maximal NK cell toxicity [3.85119, - Data fitting from Shenouda et al. (2017)
39.222]

d Maximum rate at which CD8" T cells lyse cancer cells 1.7 day~! Borrowed from de Pillis et al. (2013)

1 Hill coefficient measuring the steepness of the CD8" T cell toxicity 1.7 - Borrowed from de Pillis et al. (2013)

curve

Sc Value of (%)' for half-maximal CD8" T cell toxicity 3.5.1072 - Borrowed from de Pillis et al. (2013)

ON Constant source of NK cells 1.13-108 cell - day™! Estimated from Zhang et al. (2007)

On Rate of programmable NK cell death 0.06301 day! Estimated from Zhang et al. (2007)

p Rate of NK cell death due to tumor interaction 4.66-10712 cell”! - day™! Estimated from homeostasis state

N Rate of Treg-induced NK cell apoptosis 107 cell™ . day™' Data fitting from Olkhanud et al. (2009)

SN NK cell resistance to Treg-induced apoptosis coefficient 0.5 - Data fitting from Olkhanud et al. (2009)

K Rate of CD4*-T-cell-induced NK activation 1.63.10 " cell™! . day~! Estimated from homeostasis state

oc Constant source of CD8" T cells 3.107 cell - day™! Estimated from Hellerstein et al. (1999)

Oc Rate of programmable CD8" T cell death 0.009 day~! Estimated from Hellerstein et al. (1999)

q Rate of CD8" T cell death due to tumor interaction 3.422.10°1° cell™! - day™! Borrowed from Kuznetsov et al. (1994)

Ye Rate of Treg-induced CD8" T cell death 10°© cell™! . day~! No data found

r Rate of CD8" T cell activation due to NK lysed tumor cell debris 1.05-.10°1° cell™! . day™! Estimated from homeostasis state

jc Rate of CD8" T cell recruitment due to cancer 1.245.107! day™! Borrowed from Kuznetsov et al. (1994)

ke Breast cancer cell number for half-maximal CD8" T cell recruitment 2.019-107 cell Borrowed from Kuznetsov et al. (1994)

due to cancer
M Rate of CD8" T cell recruitment due to CD4" T cells 2.48 day™! Estimated from homeostasis state
", CD4" T cell number for half-maximal CD8" T cell recruitment due to 2.5036-10° cell No data found
CD4" T cells

oy Constant source of CD4" T cells 22.107 cell - day™! Estimated from homeostasis state

Ou Rate of programmable CD4"* T cell death 0.00797 day~! Estimated from Hellerstein et al. (1999)

Ju Rate of CD4" T cell recruitment due to breast cancer 4.45.10°12 cell ™! - day™! Estimated from homeostasis state

Ky Breast cancer cell number for half-maximal CD4" T cell recruitment 2.5036-103 cell No data found

c1 Rate of differentiation of CD4" T cells to Tregs 121.10°1° cell ! - day™! Estimated from homeostasis state

OR Constant source of Tregs 9.24.10° cell - day™' Estimated from homeostasis state

Or Rate of differentiation of CD4" T cells to Tregs 0.03851 day! Estimated from Mabarrack et al. (2008)

op Constant source of non-tBreg B cells 3.16-107 cell - day™! Estimated from homeostasis state

0p Rate of programmable non-tBreg B cell death 0.0395 day! Estimated from Macallan et al. (2005)

c Rate of differentiation of B cells to tBregs 1.7-10°13 cell”! - day™! Estimated from homeostasis state

Vs Rituximab-induced non-tBreg B cell inhibition coefficient 20 mlL? Estimated from Tobinai et al. (1998) and Cooper

pg? - day
et al. (2004)
O, Rate of programmable tBreg death 0.039 day~! Estimated from homeostasis state
Ox Rate of excretion of rituximab 0.033 day! Estimated from Tobinai et al. (1998) and Regazzi

et al. (2005)

of age. Looking at the data from their Table 1, we have that the
average B cell half-life in those 12 donors, with an average age of
about 51.1 years, is approximately 17.56 days. Assuming exponen-
tial decay of B cells, we have that the rate of programmable B cell

death is 05 = ”gféizday ~ 0.0395 day .

The rate of differentiation of B cells to tBregs, c; =1.7-10"
cell™! . day~', is derived by assuming Eq. (2.1f) at the high-tumor
equilibrium. When % =0, we have that oz — 03B; — c;T1B; =0
and by solving for ¢, we derive its value.

The rituximab-induced non-tBreg B cell inhibition coefficient,

Vg =200
choosing the value of y;, so the behavior of non-tBreg B cells to
be similar to data from Tobinai et al. (1998) and Cooper et al.

(2004). For a more in-depth discussion, see Section 4.2.

was found by running numerical simulations and

3.7. The tBregs

The rate of programmable tBreg death, 0z, = 0.039 day~', is
derived by assuming Eq. (2.1g) at the high-tumor equilibrium.
When ddig = 0, we have that 0g Br, + c;T1B; = 0 and by solving for
0, we derive its value.

The rate of differentiation of B cells to tBregs, ¢; =1.7-107"3
cell”! - day~!, was derived in Section 3.6.

3.8. The rituximab

The rate of excretion of rituximab, 6x = 0.033 day ', is taken
from Tobinai et al. (1998) and Regazzi et al. (2005). In Tobinai
et al. (1998), the authors measured the half-life of 12 rituximab-
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treated patients with relapsed CD20* B-cell lymphoma. Four of the
patients received four weekly doses of 250 mg/m? and eight of the
patients received four weekly doses of 375 mg/m?. In total, the
average rituximab half-life of both groups was 4454 h. In
Regazzi et al. (2005), the authors measured the half-life of 22
patients with follicular lymphoma in complete or partial remission,
14 patients with various autoimmune disorders, four patients with
AL Amyloidosis and eight patients with relapsed follicular or man-
tle cell lymphoma. All patients received the standard dose of
375 mg/m?. Patients in the first two groups received four weekly
doses, patients in the third group received eight weekly doses,
whereas patients in the fourth group received a total of six doses
with various schedules. No statistically significant difference was
observed between the groups, with a total average half-life of
about 3 weeks. Seeing as both studies agree on the half-life of
rituximab being about 3 weeks and assuming exponential decay,

we have that 0x = ;122 ~ 0.033 day .

The rituximab dose function, »(t), is a function of time, and is
determined as follows. The standard dosage of rituximab is
375 mg/m? once a week for four weeks, as its clinical safety and
efficacy has been established (Grillo-Lépez, 2000). However, when
inside the organism, rituximab is measured in pg/mL as we can
notice in several studies, for example in Tobinai et al. (1998) and
Regazzi et al. (2005). Therefore, we convert the amount of ritux-
imab received per dose from mg/m? to ug/mL. We choose the body
surface area to be equal to 1.7 m? based on breast cancer patients’
data provided by Table 3 in Sacco et al. (2010) and references there
in. In Sacco et al. (2010), the authors focused on cancer patients
who were already receiving some sort of treatment, but we do
not notice a difference between them and patients who received
no treatment based on values from other studies discussed in that
particular article. Furthermore, assuming once again that the aver-
age human has 5 liters of blood, we have that

37518 375 q7m2._ L M8 _375-17mg ., i
m? 5.10°mL m?  5.10° mL mL
(38)

Hence, we assume that every patient receives 127.5 ug/mL
rituximab per dose.

In Regazzi et al. (2005), we see that the infusion time of ritux-
imab is about 4 to 6 h for the first infusion and 3 to 4 h for subse-
quent infusions. Assuming that each infusion lasts 4 h, we have
that in order to model the total amount of rituximab entering
the organism, the value of »(t) needs to be equal to

v(t):127'5 ug :127.5 ne ug
4 mL-hour 4/24 mL-day mL - day’

(3.9)

for 4 h in order to simulate a full infusion. Therefore, in order to
model a complete standard dose, starting at day 0, we have that

o(t) = {765, teD

3.10
0, elsewhere, ( )
where

D={teR:(0<t<0.16)U(7<t<7.16)U(14 <t <14.16)U (21 <t < 21.16)}.
(3.11)

To sum up we have Table 5.

4. Numerical simulations and results

In this section, we numerically solve problem (2.1)-(2.2) using
Julia and the suite DifferentialEquations.jl (Rackauckas and Nie,
2017). Before we begin, in order to get a better understanding of
the breast tumor size, we convert the primary tumor size classifi-
cations of the American Joint Committee on Cancer, found in

10
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Table 2 of Giuliano et al. (2017), from diameter (measured in
mm) to total cell count. We present the results in Table 6. We give
a detailed explanation about this conversion in Appendix D.

4.1. Numerical simulations without rituximab

We begin by verifying whether our model yields a high-tumor
equilibrium close to the high-tumor homeostasis values we calcu-
lated in Appendix A.2. As far as the zero-tumor equilibrium is con-
cerned, there is no need to numerically verify its existence, since in
our linear stability analysis in Appendix C, we calculated it analyt-
ically and, additionally, we derived some of the model’s parame-
ters using every coordinate of the zero-tumor homeostasis value
we found in Appendix A.1. In Fig. 5, we see that with E; as the ini-
tial condition and parameter values as in Table 5, with ¢ =15
day™!, sy =25 and & = 1, the equilibrium of the model shows a
slight decreased value of breast cancer cells when compared to
the biological homeostasis value determined in Appendix A.2. In
particular, the number of breast cancer cells after 300 days is

9.97 - 10° cells, whereas all the other cells retain their initial value.
This is to be expected, since we assumed breast cancer cells’ high-
tumor biological homeostasis value to be equal to that of an
immunodeficient organism. Therefore, we verify that system
(2.1) exhibits biologically realistic results and we move on to
studying the interactions of breast cancer and the immune system.

Next, we numerically test the stability of the high-tumor equi-
librium. Fig. 6 shows that an organism with the same parameter
values as the simulation showcased in Fig. 5, is not able to fight
a relatively small, T1a-stage tumor, with a total cell population

of 9.18-10° cells, while being able to kill any tumor lower than
that. Evidently, the high-tumor equilibrium is stable.

We turn our attention to the zero-tumor equilibrium and its
stability. As this equilibrium point’s mathematical complexity is
lower when compared to the complexity of the high-tumor equi-
librium, we are able to analytically study its local stability. Lin-
earization around the equilibrium shows that the zero-tumor
equilibrium is locally stable for parameter values as in Table 5
(for more see Appendix C). In fact, out of the three parameters that
represent NK cells’ strength at lysing breast cancer cells, ¢, sy and 6,
only c affects the local stability of the system and therefore causes
the organism to either kill or succumb to the tumor when near the
zero-tumor equilibrium. We note that c is the only parameter of
the aforementioned three, that does not directly relate to the ratio
of NK to breast cancer cells, so it seems that in a healthy organism
the rate at which NK cells lyse tumor cells is of greater importance
than their ratio. That could also explain the case of cancer escaping
immune surveillance and establishing itself, while only starting as
a few cells. The same holds for the respective CD8" T cells param-
eters. For example, Fig. 7 shows a case of immune surveillance
breakdown, with ¢ = 0.1 day !, d = 0.1 day ! and an initial condi-
tion of 5 breast cancer cells while all the other cells are at their
healthy homeostasis value. We see that after approximately
250 days, the tumor reaches its carrying capacity. An interesting
observation is that in this scenario, a breast cancer tumor needs

Table 6
Classification of breast cancer size expressed in total breast cancer cell count.

Category Range (in Total Breast Cancer Cell Count)

Tl [0,2.30-10°]

Timi [0,2.88-10°]

Tia [2.88-10°,3.59 - 107]

T1b [3.59-107,2.88 - 10%

Tic [2.88-10%,2.30-10%

T2 [2.30-10°,3.59 - 109

T3 [3.59-10", +o0]
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Fig. 5. Initial condition equal to E; and parameter values as in Table 5, with c = 15 day ', sy =25 and 6 = 1.

1010
10° |-
108 |
107 ]
/.l [ Rl SN S S O
.,.
108 | —— BCa Cells
1 o === NK Cells
1 -.-+-CD8* T Cells
N S CD4* T Cells
10 .- Tregs
B Cells
tBregs
104 L L L L L L L L L L 1 )
0 25 50 75 100 125 150 175 200 225 250 275 300

Days

1010 -
109 |-
3 |-
10 —  BCa Cells
--- NK Cells
--=--CD8* T Cells
107 CD4F T Cells
Tregs
B Cells
106 b tBregs
’.’ N
1 R N
a /" '
f ke \
100 | ’/, _____________________________________
104 | | | | | | | | | |
0 25 50 75 100 125 150 175 200 225 250 275 300

Days

Fig. 6. Initial condition of breast cancer cells is Left: 9.18 - 10° cells. Right: 9.17 - 10° cells. All the other initial conditions are equal to E; and parameter values are as in Table 5,

with c =15 day~, sy =25 and 6 = 1.

to be of around 10? cells in order to generate tBregs and it does so
at around 80 days after its formation.

Being interested in whether sy and é play a bigger role in tumor
elimination as we move further away from the zero-tumor equilib-
rium, we run simulations to find what is the biggest tumor a
healthy organism can beat. In Fig. 8, we see that a healthy organ-
ism with parameter values as in Table 5 with ¢ =15 day~},
sy =25 and 6 = 1, can kill T1c-stage tumors of around 1.03 - 10°
cells, while unable to kill tumors larger than that. We also see that
by increasing the value of § to the maximum value found in our
data fitting in Section 3.1, the immune system is capable of beating
tumors larger than the aforementioned size, while the same also
holds for the case in which we decrease the parameter sy to its
lowest, that is sy = 3.85119. It is evident from the form of the func-
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N(\
SNTO+N*?
that an increase in ¢ and a decrease in sy, or in other words, an
increase in the maximum rate at which NK cells lyse cancer cells

tional response regarding the NK lysing of tumor cells, —c

and a decrease in the value of (%5 for half-maximal NK toxicity,
respectively, benefits the organism. Nevertheless, things are a bit
more complicated as far as ¢ is concerned. In contrast to the results
shown in Fig. 8, Table 7 shows the final number of cancer cells after
300 days in a simulation with initial conditions as in the high-
tumor homeostasis values save for breast cancer cells and NK cells,
all while allowing 6 to take values outside of our data fitting results
in order to illustrate how the tumor gets larger as ¢ increases. In
order to make sense of these seemingly contradicting results, we

take a closer look at the functional response term —CSNT{\,’ﬁ.
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Fig. 7. Initial condition of breast cancer cells is 5 cells. All the other initial conditions are equal to E, and parameter values, except for d = 0.1, are as in Table 5, with c = 0.1
day !, sy =25and 5 = 1.
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Fig. 8. Left: Initial condition of breast cancer cells is 1.03 - 10° cells and 5 = 1. Center: Initial condition of breast cancer cells is 1.04 - 10° cells and § = 1. Right: Initial condition
of breast cancer cells is 1.39 - 10° cells and 5 = 1.3. All the other initial conditions are equal to E, and parameter values are as in Table 5, with ¢ = 15 day~' and sy = 25.

Table 7
In all simulations the initial value of breast cancer and NK cells is 1.04 - 10°cells and 5 - 108cells, respectively, with the other cells as in E;. Parameter values are as in Table 5, with
c=19 day ' and sy = 4.

Value of § 0.0002 0.002 0.02 0.2 1 2
BCa cells after 300 days 8.182-10° 8.190- 10° 8259 10° 8.810-10° 9.777 -10° 9.970-10°
The functional response in question is a Hill function of the ratio ger ¢ is, the faster the lysis percent increases when the ratio

of NK to breast cancer cells, with é being its Hill coefficient. That increases while near the curve’s inflection point. In Fig. 10, we
means that values of 6 smaller than 1 give to the curve of the breast showcase how increasing the initial value of NK cells affects the
cancer lysis by NK cells a hyperbolic form, whereas values of ¢§ growing of breast cancer depending on the value of 5. The param-
greater than 1 give to the curve a sigmoid form. This phenomenon eter g, as well as c and sy in addition to breast-cancer-type-specific

is also present in our data fitting experiments in Fig. 3. Further- as we showed earlier, are also patient-specific, as found in de Pillis
more, as can be seen in Fig. 9, the smaller the Hill coefficient is, et al. (2005) for the respective CD8" T cells case, and could theoret-
in this case 4, the slower the lysis percent increases the more the ically be measured. Since one way of increasing the number of NK
NK to breast cancer cell ratio increases. On the other hand, the lar- cells, and in turn the ratio, in real life could be by NK adaptive

12
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Fig. 10. In all simulations the initial value of breast cancer cells is 1.04 - 10® cells and all the other cells are equal to their high-tumor homeostasis values. Parameters are as in

Table 5 with c = 19 day ! and sy = 4.

immunotherapy, measuring in advance the value of each patient’s
8, as well their total number of NK and breast cancer cells could be
a valuable indication to whether an NK adoptive immunotherapy
would have the intended results.

We continue our analysis by examining the interactions
between breast cancer cells and tBregs. We saw earlier that a
healthy organism could beat tumors as large as around 1.03 - 10°
cells, which is a Tlc-stage tumor. In the case, however, that the
tumor has generated as many tBregs as their high-tumor equilib-
rium value, that number goes down to 5.58 - 10® cells as can be
seen in Fig. 11, which is a T1b-stage tumor. When tBregs have
led to the proliferation of Tregs that number goes even lower to
1.10 - 10 cells, which is a T1a-stage tumor. Clearly, another reason
of breast cancer being able to establish itself is the result of the
existence of regulatory cells. Our simulations show that the fewer
they are the more likely it is for an organism to kill the tumor. The

13

authors of Olkhanud et al. (2011) suggested the anti-CD20 anti-
body rituximab, which would deplete the B cell population and
therefore tBregs - potentially stopping the proliferation of tBregs
and in turn Tregs, as a possible therapy for breast cancer. We study
the effects of rituximab in Section 4.2.

4.2. Numerical simulations with rituximab

We firstly check whether our model yields reasonable results in
response to treatment with rituximab, based on data from clinical
studies. In Tobinai et al. (1998), 12 patients with relapsed CD20" B-
cell lymphoma were treated with rituximab, as we already dis-
cussed in Section 3.8. In all but one patients, B cells in the periph-
eral blood decreased to between 0 and 2% of the total lymphocyte
population, within two days after the first infusion. The remaining
patient also exhibited reduced B cell levels, but only after the final
infusion, that is four weeks after the first dose. In the four months
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Fig. 11. Left: Initial condition of breast cancer cells is 5.58 - 10% cells and of tBregs as their high-tumor homeostasis value. Right: Initial condition of breast cancer cells is
1.10- 107 cells and of Tregs and tBregs as their high-tumor homeostasis value. In both simulations the initial value of all of the other cells is as their zero-tumor homeostasis

values. Parameters are is in Table 5, with c = 15 day~!, sy =25 and 6 = 1.
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Fig. 12. Initial condition of breast cancer cells is Left: 9.55 - 10° cells and Right: 9.54 - 10° cells. In both simulations the initial condition of all the other cells is at their high-
tumor homeostasis value. Parameters are is in Table 5, with ¢ = 15 day ™!, sy = 25 and 6 = 1. Four weekly doses of 375 mg/m? of rituximab are administrated.

that the patients’ B cell levels were monitored, their B cell popula-
tion did not recover. In Cooper et al. (2004), 57 patients with
immune thrombocytopenic purpura were treated with the stan-
dard dose of rituximab, that is four weekly doses of 375 mg/m?.
As we can see in Fig. 5 in Cooper et al. (2004), B cell levels started
decreasing after the first infusion with rituximab and got depleted
approximately five weeks later, after which B cells slowly
increased until they regained their original population at around
51 weeks. As we can see in Fig. 12, in our simulations, the non-
tBreg B cell population rapidly decreases, just like in Tobinai
et al. (1998), and reaches a population of around 10 cells, thus
being almost depleted, at around the 25th day, that is around
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10 days later when compared to the patients from Cooper et al.
(2004). In our simulations, 120 days after the first dose, the non-
tBreg B cell population is around 10* cells, which is negligible com-
pared to the total lymphocyte population, just like the data from
the two clinical studies. Furthermore, after 350 days the non-
tBreg B cell population is slowly reaching its original number, that
is about 10° cells, with the same thing happening at around the
357th day in Cooper et al. (2004). Since the behavior of non-
tBreg B cells in our model is in agreement with the two clinical
studies, we verify the validity of our model in predicting B cell
behavior in response to rituximab treatment and we therefore pro-
ceed to analyze the results with regard to tumor growth.
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In Fig. 12, we see that with the standard treatment of four
weekly doses of 375 mg/m? rituximab, the highest number of ini-
tial breast cancer cells an organism can beat raised slightly to

9.54 - 10° cells, when compared to 9.17 - 10° cells for the case with-
out rituximab treatment, with both of them being T1la-stage
tumors. We notice that the difference between the two breast can-
cer cell populations is very small. Even though tBregs exhibit a
greater decrease when compared to the no rituximab case, it is still
not enough for the organism to fight a significantly larger-sized
tumor. Furthermore, tBregs start increasing shortly after the tumor
has reached its carrying capacity. Additionally, we notice a slight
decrease in the number of non-Treg CD4" T cells, which is to be
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expected since B cells activate CD4" T cells. We also notice a
decrease in the Treg population, which returns to normal levels
after tBregs reached their equilibrium. With these in mind, it
seems that the tumor-induced differentiation of B cells to tBregs
seems to play a bigger role than B cells activating CD4" T cells, as
their depletion helps the organism, if only slightly. Hence, B cells
seem to play a pro-tumor role in breast cancer growth.

We continue our analysis with trying out different experimental
dosage schedules and quantities and evaluating their results. The
administration of eight weekly doses of 375 mg/m? of rituximab,
just like in Regazzi et al. (2005), does not change the maximum
number of breast cancer cells an organism can beat, as we can
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Fig. 13. Initial condition of breast cancer cells is Left: 9.55 - 10° cells and Right: 9.54 - 10° cells. In both simulations the initial condition of all the other cells is at their high-
tumor homeostasis value. Parameters are is in Table 5, with ¢ = 15 day ™!, sy = 25 and 6 = 1. Eight weekly doses of 375 mg/m? of rituximab are administrated.
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Fig. 14. Initial condition of breast cancer cells is 9.55 - 10° cells, whereas all the other cells are at their high-tumor homeostasis values. Parameters are is in Table 5, with
c=15day !, sy = 25 and 6 = 1. A dotted line represents the tumor cell population, a dashed the tBregs and a solid the non-tBreg B cell population. Case 1: Four weekly doses
of 375 mg/m?. Case 2: Two weekly doses of 1 g/m?. Case 3: Eight weekly doses of 375 mg/m?. Case 4: Four doses of 122.549 mg/m? every five days. Case 5: Eight weekly doses

of 1 g/m?.
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see in Fig. 13. Even though that at four weekly doses tBregs
decrease up to around the 188th day before they start increasing,
at eight weekly doses the same things happens at around the
210th day. It is clear that more doses result in a further reduction
of tBregs. However, this reduction happens too late, at a time when
breast cancer has already reached its carrying capacity, thus mak-
ing the organism unable to kill it.

In Fig. 14, we compare five cases of different rituximab dosages.
In the first case we consider a standard dose of four weekly doses
of 375 mg/m?, just like in Fig. 12. For the second case, we increase
the infused concentration of rituximab to 1 g/m? and decrease the
number of infusions to two, just like in Seitz-Polski et al. (2019),
where the authors used the same dosage to treat patients with
membranous glomerulonephritis. In the third case, we model eight
weekly doses of 375 mg/m?, like the case in Fig. 13. In the fourth
case, we experiment with decreasing the quantity of rituximab
infused to the patient to 122.549 mg/m?, while also decreasing
the dose schedule to be one infusion per five days. Finally, the fifth
case is an extension of the third case, where we increase the dosage
schedule to an 8-dose schedule and keep the quantity of rituximab
to 1 g/m?. In Fig. 14, we notice that the treatment dosage that more
successfully depletes non-tBreg B cells, while also being the supe-
rior at reducing tBregs is the fifth case. It is clear that no matter
how successful each case is at depleting B cells, the effect it has
on tBregs is to maintain the rate at which they decrease for a
longer amount of time. In other words, the more successful in
depleting the B cells a dosage is, the more time tBregs decrease
for and they do so while maintaining the rate at which they
decrease. However, that is not enough for the organism to beat
the tumor, as that decrease of tBregs is not fast enough.

4.3. Numerical sensitivity analysis

In order to explore which parameters have the greatest effect on
breast cancer-immune dynamics, we perform local sensitivity
analysis on the model without rituximab interventions. The proce-
dure has as follows. Firstly, we measure the final tumor size after
50 days with the initial condition of breast cancer cells being
9.5.10° cells, whereas all the other cells are at their high-tumor
homeostasis values and parameter values as in Table 5, with
c=15 day~!, sy =25 and ¢ = 1. Next, we rerun the simulation,

100 |-

50
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but this time we increase one parameter by 1% and measure the
percent change of the breast cancer cell population after 50 days
when compared to our first simulation. Subsequently, we revert
the parameter back to its original value and decrease it by 1%,
before rerunning the simulation and again measuring the percent
change of the final tumor size when compared to our first simula-
tion. After doing the same for all parameters, we get Fig. 15.

In Fig. 15, we notice that the parameters with the biggest
impact on tumor growth, mainly concern five type of cells: breast
cancer cells, NK cells, CD8" T cells, Tregs and tBregs. The parameter
with the biggest impact on the system is the Treg-induced NK cell
inhibition coefficient, Az, which is no surprise considering that it
directly concerns three of the most important cells in our model:
breast cancer cells, NK cells and Tregs. Finding a way to decrease
the inhibition caused by Tregs to NK cells would greatly help the
organism. It is also natural for the breast cancer growth rate, q,
to play a big role in tumor growth. An interesting observation is
that contrary to the parameters regarding NK cells, the parameters
regarding CD8" T cells, show little to no sensitivity. Therefore, in
the case studied in our sensitivity analysis, it is clear that NK cells
are of greater importance when compared to CD8* T cells. Addi-
tionally, the three parameters we focused on in our numerical sim-
ulations, c,sy and § also play a big role. Since, in our sensitivity
analysis, the initial ratio of NK to breast cancer cells is by far
greater than one, increasing 6, has an anti-tumor effect, while the
opposite holds for decreasing ¢, further validating our claims in
Section 4.1. Furthermore, the natural death rate of Tregs, 0k, their
constant source, oy, as well as the rate of differentiation of CD4*
T cells to Tregs, c1, are also of importance. This implies that a drug
such as sunitinib, which reduces the rate at which T cells differen-
tiate into Tregs (Gu et al., 2010), could prove useful in treating
breast cancer. Finally, the reliance of our model on the natural
death rate of tBregs, 0p,, and the small reliance on parameters
directly involving non-tBreg B cells, implies that a drug explicitly
targeting tBregs, instead of implicitly targeting them through
non-tBreg B cells, could be a better option.

5. Conclusion and discussion

In this study, we developed a model of nonlinear ordinary dif-
ferential equations with the intent of exploring the various interac-

B Parameter Increased by 1%
Il Parameter Decreased by 1%

Percent Change in Final Tumor Size After 50 Days
1
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Fig. 15. Depicted is the effect of a 1% parameter change on final tumor size after 50 days. Initial condition of breast cancer cells is 9.5 - 10° cells, whereas all the other cells are
at their high-tumor homeostasis values. Parameters are is in Table 5, with ¢ = 15 day !, sy =25 and 6 = 1.
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tions between breast cancer and the immune system, with a focus
on tBregs. Additionally, based on data fitting, we chose a Hill func-
tion with its variable being the ratio of NK cells to breast cancer
cells, as the functional response which describes the way NK cells
lyse breast cancer cells.

Firstly, we validated the biological realism of our model by
comparing its numerical solution with the two biologically realistic
homeostasis values we derived. Then, we found out that the largest
tumor a healthy and a compromised organism could beat is a T1c-
stage and a T1a-stage tumor, respectively.

Moreover, we gave the conditions under which an increase in
the NK cell population, such as through the use of immunotherapy,
could bear the intended results. These conditions revolved around
the Hill coefficient of the functional response, which describes the
way NK cells lyse breast cancer cells, as well as the ratio of NK cells
to breast cancer cells. The Hill coefficient can be measured in a
clinical setting for each particular patient though a chromium
release assay, thus potentially making it a significant marker.

Furthermore, we showed that when tBregs exist in an organism
with the initial condition of all the other immune cells at the zero-
tumor homeostasis state, the largest tumor the organism can beat
goes down to a T1b-stage tumor and goes even lower to a Tlc-
stage tumor when tBregs have led to the proliferation of Tregs.
Thus, we showed that tBregs need to be Kkilled, in order for the
tumor to be controlled.

We also performed simulations with the anti-CD20 antibody
rituximab. After validating that the B cell decrease in our model
mirrors that of clinical trials, we showed that with the standard
rituximab dosage the size of the tumor an organism can beat
increases, but does so only slightly. We additionally explored the
behavior of our model with experimental rituximab dosages and
found the same results as with the standard dose, as far as control-
ling the growth of breast cancer is concerned.

The aforementioned results, along with the reliance of breast
cancer growth on tBregs and Tregs rather than directly on B cells,
as was revealed by our sensitivity analysis, bore testament to the
fact that attempts at controlling tBregs and Tregs could bring bet-
ter results than targeting B cells.
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Appendix A. Homeostasis states

Here we derive two biological realistic homeostasis states for a
zero-tumor condition and a high-tumor condition. Using the values
of these two homeostasis states, we verify that our model yields
biologically relevant results, as well as determine some of the
model parameters.

A.1. Zero-tumor homeostasis values

Naturally, Ty = 0 in the zero-tumor homeostasis state.

Approximately 4 to 29% of circulating lymphocytes are NK cells
(Keohane et al., 2015). The average number of lymphocytes per
microliter is 1000 to 4800 cells (Abbas et al., 2014), and since the
average human has an average of 5 liters of blood (Starr et al.,
2012), we have that the total population of lymphocytes in a
human is 5-10° to 24 - 10° cells. Therefore, the total population
of NK cells in blood is 2 - 10® to 6.96 - 10° cells. Taking the median
value yields Ny = 3.38 - 10° cells.
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For the CD8" T cell zero-tumor homeostasis value, we take the
value derived from de Pillis et al. (2009) which is
2.526-10% cells - L', thus multiplying by 5 liters which is the aver-
age blood volume in a human, yields Co = 1.263 - 10° cells. This
value represents the total number of CD8" T cells specific for a par-
ticular tumor associated antigen in the case of melanoma. While in
this study we are interested in breast cancer, the authors of de
Pillis et al. (2009) noted that other antigens present a similar
degree of CD8" T cell activation.

The percentage of the total population of CD4" T cells among
circulating lymphocytes ranges from 50 to 60% (Abbas et al.,
2014). Based on the total number of lymphocytes we calculated
above, we have that the total number of circulating CD4" T cells
ranges from 2.5 - 10° to 1.44 - 10'° cells, so we choose the interme-
diate value of 3 - 10° cells. However, we are interested in the non-
Treg CD4" T cell population, thus subtracting the median of the
Treg population (see the following paragraph for its derivation)
from the chosen intermediate value, we get the population of
non-Treg CD4" T cells in the zero-tumor homeostasis state to be
Ho = 2.76 - 10° cells.

Tregs make up 5 to 10% of the circulating CD4" T cell population
(Pang et al., 2013), or in other words 2.5 to 6% of the whole circu-
lating lymphocyte population, which means that their total popu-
lation is in the range of 1.25-10°® to 1.44 - 10° cells. Choosing the
value corresponding to 8% of the circulating CD4"* T cell population
(Liyanage et al., 2002) as our zero-tumor homeostasis state value
for Tregs, we get Ry = 2.4 - 10° cells.

B cells are approximately 3 to 21% of circulating lymphocytes in
a healthy organism (Keohane et al., 2015), ergo their total popula-
tion is 1.5 - 10° to 5.04 - 10° cells. Taking the median of that range
and rounding it, we get that By = 8 - 10° cells.

We assume that there are no tBregs in the absence of tumor, at
least not a clinically detectable number of them, therefore By, = 0.

To summarize, the zero-tumor homeostasis state is

Ey = (0,3.38 -10°,1.263-10°,2.76 - 10°,2.4 - 10%,8 - 108,0)

- cells.
(A1)

A.2. High-tumor homeostasis values

We assume that the breast cancer cell population at the high-
tumor homeostasis state is equal to our model’s carrying capacity
parameter, 1/b. Based on our data fitting in Section 3.1, we choose
the value of b to be 107'° cell?, thus the breast cancer cell popu-
lation at the high-tumor homeostasis state is T; = 1/b = 10 cells.

For the NK cell population, we use the same reasoning as in de
Pillis et al. (2009), where authors noticed that in Meropol et al.
(1998) the average circulating NK cell population in cancer
patients before receiving daily doses of IL-2 was 250 cells per
microliter (data was taken from Fig. 1 in Meropol et al. (1998)),
therefore N; = 1.25 - 10° cells.

For the CD8" T cell high-tumor homeostasis state, we again use
the value derived in de Pillis et al. (2009), 5.268 - 10° cells - L™,
thus C; =2.634-10° cells. Just like the homeostasis value of
CD8" T cells in the zero-tumor homeostasis state, this value was
calculated with data from CD8* T cells activated from a
melanoma-specific antigen, however as the authors of de Pillis
et al. (2009) state, we assume a similar amount of CD8* T cells to
get activated in other types of cancers too.

In Madu et al. (2013) the authors measured the amount of cir-
culating CD4" T cells, in 80 cancer patients, 36 of which were suf-
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fering from breast cancer, before and 12 days after starting
chemotherapy. Before starting chemotherapy the average number
of circulating CD4" T cells in breast cancer patients was 613 cells

per microliter or about 3.065 - 10° cells in total. Since we are inter-
ested only in non-Treg CD4" T cells, we subtract R, (the Treg high-
tumor homeostasis value found in the following paragraph) from

the total CD4* T cell number, which yields H; = 2.55621 - 10° cells.

In Liyanage et al. (2002) the authors measured and compared
the prevalence of Tregs in the whole CD4" T cell population among
35 breast cancer patients, 30 pancreatic cancer patients and 35
healthy donors. In the case of breast cancer patients they found
that the percentage of Tregs among circulating CD4"* T cells was
higher when compared to healthy donors. Specifically, 16.6% ver-
sus 8.6%, respectively. Based on the 16.6% prevalence of Tregs in
breast cancer patients and the fact that we calculated that the

average number of circulating CD4* T cells is 3.065 - 10° cells, we

have that R, = 5.0879 - 10° cells.

In Tsuda et al. (2018) the authors identified the expressions of
cell markers from blood samples of 27 breast cancer patients and
12 healthy donors and found that the percentage of B cell in each
cohort was about 8.905% and 11.51%, respectively (data was taken
from Table 2 of Tsuda et al. (2018)). Those numbers are within the
normal range of B cells (Keohane et al., 2015; Abbas et al., 2014),
thus we’ll assume the total B cell population remains constant
when compared between a healthy person and a cancer patient,
with the only changes happening within the B cell sub-
populations, as we can also see in Tsuda et al. (2018), with memory
B cells being the most expanded sub-population. Consequently,
since we are interested in the non-tBreg B cell population, we sub-
tract the tBreg population assumed in the following paragraph
from By to find B; = 7.67 - 108 cells.

As tBregs are newly discovered, data regarding them are
scarce. For that reason, we are unable to find the average pop-
ulation of tBregs in a breast cancer patient. Thus, we observe
that in Murakami et al. (2019) the authors discover an
increase in the percentage of the immunosuppressive cytokine
IL-10 producing B regulatory cells expressing the CD19*CD24M-
CD27* mark in patients with gastric cancer compared to
healthy donors. In particular about 8.35% versus about 5.65%
of the whole CD19" expressing B cell population, respectively
(data taken from Table 1 of Murakami et al. (2019)). Since B
cells express the CD19" mark, we consider this to be the
whole B cell population. Furthermore, the authors of
Murakami et al. (2019) found out that the B cells expressing
the CD19*CD24MCD27* mark are able to suppress the prolifer-
ation of autologous CD4" T cells, while also inhibiting their
IFN-gamma production. This makes us believe that there could
be a connection between tBregs and CD19°CD24MCD27* B cells,
thus we make the assumption that half of those B regulatory
cells are tBregs. Hence, multiplying the average number of B
cells with 8.35%, dividing by 2 and rounding it we get
Br, =3.34.10 cells.

To summarize, the high-tumor homeostasis state is

E = (10’0,125 -10°,2.634 - 10°,2.55621 - 109,50879'10877,67»108,3,34-107)

- cells.
(A2)

Appendix B. Calculation of the in vitro natural death rate

Assuming that cells inside a well are not able to grow due to
lack of nutrients and space, but only die due to natural death, we
have that their population can be modeled by the following initial
value problem:
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dK
F T
where K is the cell population, 6, is the rate of natural cell death
in vitro and K is the initial number of cells.

Assuming that at time tr we count the cell population and find
that the population has been reduced by p;% compared to the ini-
tial cell population K¢, we have that K(tr) = K¢ — pg - Kg/100. By
solving initial value problem (B.1), we get K(t) = Kze ", Setting
t = tr and solving for 6, yields

1 1
HKE —Eln1 _pE.

—0k,K(t), K(0) =K, (B.1)

(B2)

Relation (B.2) allows us to find the in vitro natural death rate of
a cell population, by only knowing the time that has passed since
the cells were first put inside the wells until their assessment,
and the percentage of their reduction.

Appendix C. Linear stability analysis of the zero-tumor
equilibrium

Even though system (2.1) is too complex to analytically find all
of its equilibria, we can calculate the equilibrium in which the
tumor is zero, in the absence of rituximab. Let
E' =(T",N',C'H R,B",Bp), (B.3)
be the zero-tumor equilibrium. Assuming that all derivatives are
equal to zero and additionally that T* = 0O, then from Eq. (2.1f) we
have that B; = 0. From Eq. (2.1e), we get R = g—g From Eq. (2.1f),

we get B

‘;—:. From Eq. (2.1d), we get H" = Z—Z Replacing R* and

H* to Egs. (2.1b) and (2.1c), we get N* = Oy and
—KOH+0HON+O0 N \/%
" = — S Therefore, the zero-tumor equilibrium is
Oc+ 0g nm20g+oy
OxSn Oc Op O Op
E*_<O’ Ao g g 0y ) €D
CT 0 “plyroy °H YR UB

The Jacobian matrix of system (2.1) at the equilibrium point E*
is

An 0 0 0 0 0 0
s S U CE L U U
2, /%A
R
A 0 Ay Aw 5T 00
YO = e 0 0 a0 0 o
0 0 0 —0r %
-2 0 0 0 0 -6 O
9% 0 0 0 0 0 —0k
(C2)
where

A = —KGy + OOy + eHyN\/‘;:;,

_/RIR
Ai=a—-ce & —d,

_ Koy Or
Ay = On +VN<*\/%>7
Aqy — 0cOr(c—=akc) (1201 +0H) I05SN
31 = JeRcoR(T 05+ 0H) R Op (O (Oc—1)+1120c00) A
— _ YcOr MmoH
A33 = (‘)C O + 0o and
Asy = 111120030

(120u+01)()cOR (M2 04+0H)+0H0R (0c—11)+1120c0n0r) *

The eigenvalues of J(E") are
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M =An, bp=—0, J3=—0p, lg = —0u, A5 = —0O,

and J; = _GA'
H

J = As3 (C3)

For parameter values as in Table 5, we have that /; <0, for
i=1,2,...,7, hence E" is locally asymptotically stable.

Appendix D. Classification of breast cancer size expressed in
total breast cancer cell count

The conversion of tumor diameter (measured in mm) to total
cancer cell count that we present in Table 6 is found, using the
same method as in Section 3.1 (taken from de Pillis et al. (2013)),
where we assume that a spherical cancer cell has a diameter of
approximately 15.15um, as well as that cancer cells and tumors
are spherical. Next, we find the volume range for each tumor clas-
sification by utilizing the diameter of the largest tumor dimension,
found in Table 2 of Giuliano et al. (2017). Finally, we divide the
tumor volume by the cancer cell volume we derived, to find the
range of each classification expressed in total breast cancer cell
number.
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